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Making use of the SO(3) symmetry of the two-dimensional hydrogen atom, each of the bases for the bound states formed by the separable
solutions of the Schrodinger equation in polar and parabolic coordinates are expressed in terms of the other.
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Usando la simetria SO(3) del dtomo de hidrégeno en dos dimensiones, cada una de las bases para los estados ligados formadas por las
soluciones separables de la ecuacién de Schrodinger en coordenadas polares y parabdlicas se expresa en términos de la otra.
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1. Introduction

The hydrogen atom in n dimensions, with n > 2, has a “hid-
den” SO(n + 1) symmetry group [1-3] which i1s related to
the conservation of the Runge-Lenz vector. This symmetry
is also related to the separability of the Schrodinger equation
in two or more coordinate systems. In the case of the two-
dimensional hydrogen atom, the corresponding Schrodinger
equation is separable in polar coordinates, as a consequence
of the “obvious” rotational symmetry of the Hamiltonian, and
is also separable in parabolic coordinates, in spite of the fact
that both coordinates are non-ignorable. The separability 1n
parabolic coordinates leads to the existence of a conserved
quantity that turns out to be the Runge—Lenz vector.

Each energy level of the two-dimensional hydrogen atom
has a degeneracy of the form 2/ +1 with! = 0,1, ... and for
a given energy eigenvalue, the separable solutions 1n polar or
parabolic coordinates form a basis for the states with that en-
ergy. Therefore, it must be possible to express each ot these
bases in terms of the other. This relationship has been previ-
ously studied in Ref. 4, making use of the explicit expressions
of the eigenfunctions and some relations between the spe-
cial functions involved. Here we follow a simpler procedure
taking advantage of the relationship of the hydrogen atom
in two dimensions with a free particle on a sphere (1, 3, 5].
In Sect. 2 we summarize the relevant results concerning the
separable solutions of the Schrodinger equation for the two-
dimensional hydrogen atom with negative energy in polar and
parabolic coordinates and the relationship of these solutions
with the usual spherical harmonics. In Sect. 3 the separable
solutions of the two-dimensional hydrogen atom in polar and
parabolic coordinates are expressed 1n terms of each other. A

similar relation is derived for the separable solutions of the
two-dimensional isotropic harmonic oscillator in polar and
Cartesian coordinates.

2. Separable solutions of the hydrogen atom
and spherical harmonics

The Schrodinger equation for the bound states of the two-
dimensional hydrogen atom
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2M

is separable in polar and parabolic coordinates. The normal-
ized separable solutions of Eq. (1) in polar coordinates (7, ¢)
are given, up to a phase tfactor, by
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L¥ denote the associated Laguerre polynomials [6,7], [ =
0,1,2,...,andm = 0,41, ..., £l The separation constant
m 1s the eigenvalue of (1/h)L ., where L, is the angular mo-
mentum operator
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The normalized separable solutions of Eq. (1) in the
parabolic coordinates (u, v), defined by

1. . ‘
r = —(u® —v?),

$ Y = uv (5)
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or, equivalently, by

1
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are given, up to a phase factor, by

¢lmy — T

where the H,, are Hermite polynomials and m, =

0,%1,...,%l [5,8-10). The separation constant m,, 1S the
eigenvalue of — A, /(poh), where A, is the z-component of
1 Mkr
5'2—(P><L—L><P) — (8)

L=rxpandp = —2hV [3].
For each value of [, there must exist complex scalars,
c! such that

™, 1’
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As we shall show, the coefficients c;, ,, can be readily ob-
tained using the fact that the solutions of the Schrodinger
equation for the bound states of the two-dimensional hydro-
gen atom can be expressed in the form
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[Ret. 5, Eq. (12)], where d is a spherical harmonic, ot degree
| eiven by Eq. (3), d2 1s the solid angle element and the 1n-
tegral is over the unit sphere. The wave function i(x,y) is
normalized over the plane if and only if & is normalized over

the sphere.
The inverse of the integral transform (10) is given by
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Making use of the relationship between spherical harmonics
and solutions of Eq. (1), for a fixed value of £, given by
Egs. (10) and (11), one finds that the angular momentum op-
erators on the sphere, f;m, f}y, sz, which have the explicit
eXpressions

f,:,. = i (sinqﬁa + cot 6 cos ¢ 8(;5)
L, =ih ( coscbéae + cot 8 sin ¢ Z)
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‘correspond to A,/po, —Az/po, and L, respectively [5].
That is, if the mtegral transform (10) is denoted by
Y = TI8), then T[L,®] = (1/po)A,T(8], TIL,d] =
(—1/po) Az T[®], and T[L,®] = L,T[®]. Therefore, the
wave functions ¥, (7, @), which are eigenfunctions of L,
correspond to the spherical harmonics ®(8, ¢) that are eigen-
functions of L, i.e., the usual spherical harmonics Y, (8, ¢).
In fact, in Ref. 5 it was explicitly shown that if one substitutes
$(8,0) = YVim(0,¢) into Eq. (10) and the Cartesian coor-
dinates are replaced by polar coordinates, then one obtains
the wave function v, (1, ) given by Eq. (2) (including the

phase factor (—z)™).

In a similar manner, the wave function ’QBgmy (u,v), which
is an eigenfunction of A,, corresponds to a spherical har-
monic of degree [ that is an eigenfunction of L, with eigen-
value m,, (which is not separable in the coordinates (6, ¢)).

Let %o be the rotation about the origin in three-
dimensional Euclidean space that maps the ordered basis
{i,j,k} into {k,1,}}; then, the rotated functions 'Rg Yim
are eigenfunctions of L? = L2 + L% + L? and L,, with
eigenvatues [(/ + 1)A* and myh, respectlvely [3,11-13].
(The action of ’RD on an arbitrary function, f, is defined by
(Ro f)(r) = f(’RU (r}).) The Euler angles (¢, 8,1)) corre-

sponding to Pg in the “y convention” [14] can be taken as
(w/2,m/2, ) and, therefore,

Ro Yim, ™) Yim,  (12)
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where D! , (¢,8,1) are the Wigner functions [3,11-13].

The Wigner D functions are given by
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Ro Vi, = (—1)™ 3 (=)™ dl, (g) Yim.  (15)

We claim that the wave function ., (u,v), given by
Eq. (7), corresponds to Rg Y;n, by means of (10), i.e.,
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According to the preceding discussion, we only need to
check that , (u,v) has the appropriate phase. From

Eq. (7) we see that under complex conjugation, (’(ley)* =
("l)my_l?;lmy and that l;lmy (U, ’U) - (—-1)1";&1?11, (_U-;u)-
On the other hand, using the fact that (’f?,g Yim, )=
(—1)"y 7?.0 Y),—m,, ONe verifies that under complex conju-
oation the right-hand side of Eq. (16) obeys the same rela-
tionship as zﬂ,gmy. This implies that the two sides of Eq. (16)
can differ at most by a real factor with absolute value equal to
| ; the relations derived from Eq. (16) show that the two sides
of this equation indeed coincide (see, e.g., Eq. (20) below).

(w + )2 L™ (u® + v?) =

Owing to the procedure employed here, Eq. (20) holds tor
| =0,1,...,and m = 0,1,...,[; however, it can be veri-
fied that Eq. (20) also holds when [ and m are half-integers.
Taking m = 0 in the last equation one obtains

o 1) < Hop (1) Hop_og
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Y —
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(cf. Ref. 7, Chap. 4).

Since L. is the infinitesimal generator of rotations about
the z-axis on the sphere and L, is the infinitesimal generator
of rotations about the origin on the plane, the fact that Iiz COr-
responds to L., under the integral transform (10) implies that
if R.(a) denotes the rotation on the plane about the origin
through the angle « and ﬁz(a) denotes the rotation on the
sphere about the z-axis through the angle «, then

R:(a)T[®] = T[R:(a)®].

Thus, taking d = 720 Y}m, 1n the last identity we obtain

RA)T[Ro Yim,] = TIRA)Ro Yim, ). (22)

z
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3. Interbasis expansions

Owing to the linearity of the integral transform (10), from Eq.
(15) it follows that

i

B, (1,0) = (1) S (=), (5) tm(r0), (1)

m—=—1

which is the desired relation (9). Since the inverse of a ro-
tation with Euler angles (¢, 8, ¢») is the rotation with Euler
angles (—1, —8, —¢), from Egs. (12) and (13) and the fact
that the matrices D! , form a linear representation of the

m’m

rotation group we obtain
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which implies that
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Making use of Egs. (2) and (7) it follows that, torm > 0,
Eq. (19) 1s equivalent to
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From Eqgs. (12) and (18) we have
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The composition of a rotation with Euler angles
(—m,—n/2,—m/2) followed by a rotation with Euler an-
gles (o,0,0), followed then by a rotation with Euler
angles (m/2,7/2,m) is the rotation with Euler angles
(—mw/2,c,7/2), as can be verified, for example, using the
fact that the rotation with Euler angles (¢, 6,1) is repre-
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sented by the SU(2) matrix

. 7 6
e~ Ud+Y)/2 cos 5 —e~Ue—Y)/2 Sin§
(6=0)/2 gin O Al 9)/2 g O
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Therefore, using again that the D functions form a linear rep-
resentation of the rotation group, i1t follows that

1 1
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and by means of the integral transform (10), this last relation
amounts to

{
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More explicitly, since a rotation about the origin through an
angle « 1n the xy-plane corresponds to a rotation about the
origin through an angle «/2 in the uv-plane [as can be seen
from Eq. (6)], we have
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(cf. Ref. 4). Using Eq. (7), one finds that the last equation 1s equivalent to
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(An alternative derivation of this relation can be found in Ref. 15.)
The two-dimensional hydrogen atom is also known to be related to the two-dimensional isotropic harmonic oscillator
(TTHO) [8-10,16,17]. The normalized separable solutions of the Schrodinger equation for the TIHO in Cartesian coordinates

are, up to a phase factor,

M
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(n;,n2 = 0,1,...) and the corresponding energy eigenvalue is (n; + ns + 1)Aw. Hence, from Eq. (20) we find that
- e
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is a normalized separable solution of the Schrodinger equation of the TIHO in polar coordinates with energy (I + 1)hw (with

[=0,1/2,1,...
in polar and Cartesian coordinates.

4. Concluding remarks

We have shown that the mapping given by Eqgs. (10) and (11)
allows us to make use of some well-known results about the
rotation of the spherical harmonics in order to find the expres-
sion of the separable solutions (2) in terms of the separable
solutions (7) and viceversa. Following this procedure, 1denti-
ties like Egs. (16), (20), (21), and (24) are readily obtained.
It may be noticed, for instance, that it is not even evident that
the result of the integration in the right-hand side of Eq. (16)
1s the product of two separate functions of v and v and it
seems that a direct proot of the validity of Eq. (16) would be
very difficult.

The solutions of the Schrodinger equation for the two-
dimensional hydrogen atom with zero energy can be related

) and Eq. (25) gives the relationship between the separable solutions of the Schrodinger equation of the TIHO

to the solutions of the Helmholtz equation in the Euclidean
plane, V2® = —&, by means of expressions analogous to
Egs. (10) and (11) [5]. In this case, the separable solutions of
V?® = —& that are eigenfunctions of the linear momentum
operators P, and P, are of the form €' (®:¥) with |s| =

and correspond to the separable solutions of the Schrodinger
equation (1) with zero energy in parabolic coordinates, while

the functions of the form J,,,(p)e*™? are separable solutions

of V°® = —®& in polar coordinates (p,#) that correspond
to the separable solutions of Eq. (1) with £ = 0 in polar
coordinates. The analog of Eq. (15) is given by e*'(&:¥) =

z:nﬂ_—___m et Jﬂl(p)ei??lg‘! where s = (COS Y, sin Of).

It 1s an interesting fact that even though Eq. (24) corre-
sponds to rotations in the plane and, hence, to an action of
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from the representation of SO(3) given by the D functions.
Even if one is not considering the hydrogen atom with nega-
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