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We introduce and solve in closed form, using momentum and kinetic energy balance, a simplified microscopic model of a body propagating
in a one dimensional resistive medium. For a whole family of collisions with varying degree of inelasticities, we find that the effective
resistive force on the moving body is opposite to and proportional to the square of the body’s velocity.
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Se plantea y resuelve en forma exacta, usando balance del momentum y energia cinética, un modelo microscopico simplificado de un cuerpo
propagiandose en un medio resistivo unidimensional Para toda una familia de colisiones con diferente grado de inelasticidad, encontramos

que la fuerza efectiva sobre €l cuerpo €s opuesta y proporcional al cuadrado de la velocidad del cuerpo.

Descriptores: roce visCoso; colisiones

PACS. 45.20.Dd; 45.50.Tn

1. Introduction

When students of elementary physics courses are introduced
to the topic of macroscopic bodies moving through a resis-
tive medium [1], they are usually told by the instructor that,
according to whether the body has a small or large cross sec-
tional area, or whether the body i1s moving at a low or high
speed, the effective resistive force 1s either proportional to the
body’s speed (Stoke’s law) [2] or to the square of the body’s
speed (Newton’s law) [3]. There is usually no much discus-
sion about the origin of these ‘force laws’ and at most, the
instructor will tell the students that these ‘laws’ are based on
experimental observations [4]. The topic 1s admittedly a dit-
ficult one, but there are however, simple models that show
how these ‘force laws’ arise from considerations of momen-
tum and energy exchange between the moving body and the
medium surrounding it [5]. The mechanical model presented
in this'work is extremely simple but has the advantage of be-
ing exactly solvable and give clues as to the relative impor-
tance of dimensionality and the character of the interactions
between the body and the medium.

2. The model

Let us consider a (macroscopic) body of mass M propagating
in a one-dimensional resistive medium modelled by a set of
identical point masses m < M, initially at rest. We assume
all interactions to be of the ‘billiard-ball’ type. The collisions
among the medium particles are assumed to be completely
elastic, while the collisions between the body and a medium
particle, 1s characterized by a ‘restitution’ coefficient ¢ that
determines the degree of elasticity of the collision. The (con-
stant) restitution coefficient € for the body-particle collision

1s defined as the ratio of the magnitudes of the velocities after
the collision (‘a’) to the one before the collision (°67):
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Thus, when ¢ = 1 we have a completely elastic colli-
sion, where the relative magnitude of the body-particle ve-
locity i1s conserved, while at e = 0, we have the case of a
completely inelastic collision, where the body and the parti-
cle remain ‘glued’ to each other after colliding. Let V{ be the
initial speed of the body, and V1, v the speeds ot the body and
particle respectively, after the first collision. From conserva-
tion of momentum, we have

MVy = MV, + mw. (2)

From Egs.(2) and (1) we obtain
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After this first collision event, the body will continue to
move in the original direction (because M > m > em)
with speed V| while the first medium particle will recoil with
speed v > V;. After some time, the first medium particle
will collide with the second medium particle (since the sys-
tem 1s one-dimensional, all medium particles can be labelled
unambiguously): since both particles have identical mass, the
first particle will come to rest, while its momentum will get
completely transferred to the second particle (remember that
we are assuming fully elastic collisions among the medium
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particles). The second particle in turn, will transfer all of its
momentum to the third particle, and so on. The body, on the
other hand, will collide again with the first particle (now at
rest). After this second collision, the body will emerge with

speed
M —em M—em\’
Vo = — Vo. S
? (M+m)v1 (M+m) - ©)

The new momentum acquired by the first medium particle
will be again carried away to the end of the system without
any backscattering. After n body-particle collision events,
the speed of the body will be

M—em\"
= Va.
i (M+m) 0 (6)

It we denote by z the distance travelled by the body be-
tween 1ts first and n-th collision, we have, n = px, where p
is the linear density of medium particles per unit length. As
in hydrodynamics, we assume that an element of length Az
while ‘small’, will contain a large number of medium parti-
cles. Re-expressing (6) in terms of z, we have

1—er\?”
Viz) = ( 1_}_6:) Vo, (7)

where r = m /M . We see that the speed of the body decreases
exponentially with distance. This can be seen by rewriting (7)
as V(x) = exp(—px) with 3 = plog[(1 + r)/(1 — er)] act-
Ing as the ettective spatial speed decay rate.

The acceleration of the body can be computed
from a(x) = dV(x)/dt V(x)dV (x)/dx. Since
dV(z)/de = pV{z)log{(1—er)/(1+7r)], we have,
a(z) = plog[(1 — er)/(1 + 7)]V?(x). The average effective
force on the body as it travels through the resistive medium
will then be

F=Ma=—-vV2 (8)
where
om 147
= ] 9
7 r Og(l—er) )

ts the resistive coefficient.
The velocity of the body as a function of time can be ob-
tained upon integration of Eq. (8):

Vo
1) = 1
ViE) 1+ bVt (10)
where
147
b= pl . 11) -
pog(l_ﬂ) (11)

The distance travelled by the body as a function of time
can, 1n turn be obtained from integration of Eq.(10). Taking
2:(0) = 0 as the initial condition, one obtains

| 14+ b V,t
LU(t): Og( -Z 0 )

. (12)
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FIGURE 1. Resistive coefficient in terms of the particle/body mass

ratio, for several restitution parameter values. From top to bottom:
¢ = 1 (completely elastic), 0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2, 0.1
and 0 (completely inelastic).

The observable that quantifies the energy loss of a projectile
as 1t propagates through a resistive medium is known as the
‘stopping power’, defined by

1 dE(x)

S(E) = p—

, (13)

where £ and p are the energy of the projectile and the num-
ber density of medium particles. For our model, E(z) =
(1/2)MV (z)?, where V(z) = Vpexp(—pBz) with 8 =
plog{(1+ r)/(1 — er)]. Therefore,

,ﬂEyzzmg(1+T)£; (14)
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L.e., the energy loss per unit length is directly proportional to
the body’s energy.

3. Results and discussion

For a whole family of inelastic collisions characterized by the
restitution coefficient € with 0 < ¢ < 1, which includes the
cases of a completely inelastic collision (¢ = () and the com-
pletely elastic one (e = 1), we have obtained that the resistive
tforce on the body is always opposite and proportional to the
square of the body’s speed: F' = —+V2. The resistive coeffi-
cient -y is shown in Fig. 1 as a function of the mass ratio r and
for several degrees of elasticity. We note that v/pm is most
sensitive to r for the completely elastic case and actually di-
verges at r = 1. In this case, both the body and the medium
particle have the same mass, which makes the body come to
a dead stop right after its first collision. For nonzero inelas-
ticity, v becomes less sensitive to r and, around » = 0.6, it
seems to become quite insensitive. Let us find the conditions
under which v/ pm is most insensitive to r. First, we define
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FIGURE 2. Velocity of body inside resistive medium as a func-
tion of time, for a mass ratio r = (.2 and several restitution pa-
rameter values. From top to bottom: € = 1 (completely elastic),
0.8,0.6, 0.4,0.2 and 0 (completely inelastic).

e* as the restitution value characterized by y(r ~ 0,¢*) =
v(r = 1,€*). A numerical computation using Eq. (9) gives

e* = 0.5936624. Second, let us compute the maximum
fractional change in y(e*,r)/pm as r sweeps from r = 0
to r = 1. To do that, we first find where the minimum

value of v(e*,r)/pm occurs, given by the solution r* of
(d/dr)[ v(e*,r)/pm | = 0. We obtain * = 0.515148. The
fractional change in v will then be

1 U5 T 004925, (15)

v(r =1, €*)
i.e., the maximum fractional change along the ¢ = €* curve
is at most of 4.9%. Thus, for ¢ = €* = 0.5936, v/pm is
nearly constant, which implies that the resistive coeftficient
v 18 the same for either a large body mass or a small one
(provided r < 1), and depends linearly on the medium mass
density pm. At higher inelasticity values, and all the way up
to r = 1, the resistive coefficient decrease with r, as Fig. 1
shows.

Figure 2 shows the velocity of the body as a function of
time for a particular mass ratio (» = 0.2) and for several resti-
tution coefficients. The figure shows that the completely in-
elastic case 1s less effective in reducing the body’s speed than
the completely elastic case. The body’s velocity decreases
monotonically with time, going as 1/¢ at large times, as can
be seen from Eq. (10). In Fig. 3 we show the distance trav-
elled by the body inside the resistive medium, as a function
of time, for the same parameter values as 1n Fig. 2. It clearly
shows that the more inelastic the collision, the more distance
the body travels, for a given time. This 1s because for the
completely inelastic case, the transter of momentum from the
body to the medium particle is the smallest possible, while it
1s the largest for the completely elastic case. From Eq. (12) it
can be proved that, for all values of the restitution parameter,
x(t) is always a monotonically increasing function of time

0
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FIGURE 3. Distance travelled by body inside resistive medium, as
a function of time, for the same parameter values as in Fig. 2.

which diverges logarithmically at large ¢ values: the body
does not have a finite stopping distance, no matter how small
its initial kinetic energy. This 1s to be contrasted with the
well-known case of a body subjected to a constant negative
acceleration (as when we apply the brakes while driving a
car), where there 1s a well-defined finite stopping distance. In
general, for a resistive ‘force law’ of the type F' = —yV' %, a
finite stopping distance is always possible only if a < 1 while
a finite stopping time is possible for a < 1 (see appendix).

The strong quadratic dependence of the resistive force
on the velocity of the body for all values of elasticity, evi-
denced by our model, seems to suggest that it is due to the
one-dimensionality of the system rather than to the actual na-
ture of the interactions. The one-dimensionality constrains all
collisions to be of the ‘head-on’ type, while in higher dimen-
sional systems (and for reasonable shaped objects), most of
the collisions would be of the “glancing” type thus reduc-
ing considerably the exchange of momentum and energy and
leading to a weaker dependence of the body’s velocity.
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Appendix

Stopping time, stopping distance and stopping power for
F=—yVe

Let us consider a hypothetical one-dimensional case where
the resistive force on a body is given by F' = —4V%, with
« > (. From Newton’s equation we have,

M (d/d)V = —yV©, (16)
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that 1s,
dv. i
Ve M

We distinguish two cases:

dt. (17)

(a) « = 1. In that case, (17) leads to

V(t) =Vy exp j—~ (%)t (18)

and

2(t) = MWV(’ {1 — exp :—-- (%)t } (19)

where we assume z(0) = 0. Thus, the stopping distance is
MVy /~ (even though the stopping time is infinite).

(b) « # 1.In this case, integration of (17) leads to

11/(1—a)

v (1 — a)t
Vi{t) =W |1 — : (20)

M Vi~

which becomes zero at
V(l‘—ﬂf)

1" = > -, (21)

(7)1 -

that 1s, a finite stopping time, provided o < 1. From (20),
and assuming 2(0) = 0, we obtain

o = y2-a
Ea
X ¢ 1 — - : — (22)
e (R

After inserting ¢ = ¢* into (22), we obtain the stopping dis-
tance: MV; ~%/(2 — a)7.

On the other hand, the ‘stopping power’ for a system de-
scribed by (16) will be

1dE 1. _.dV
S(E) = = - MV = 23
(E) P MV (23)

but, (16) implies dV/dx = —(3%)V*~1. Then,
s(E) =1 (2= i (24)
-1(3%)
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