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Scalar solitons in a 4-dimensional curved space-time
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There is a theorem known as a Virial theorem that restricts the possible existence of non-trivial static solitary waves with scalar fields in a flat
space-time with 3 or more spatial dimensions. This raises the following question: Does the analogous curved space-time version hold? We
investigate the possibility of solitons in a 4-D curved space-time with a simple model using numerical analysis. We found that there exists
a static solution of the proposed non linear wave equation. This proves that in curved space-time the possibilities of solitonic solutions is
enhanced relative to the flat space-time case.

Keywords: Solitons

Existe un teorema conocido como un Teorema del Virial que restringe la posible existencia de ondas solitarias no triviales, con campos
escalares en un espacio-tiempo plano con 3 o mas dimensiones espaciales. Esto nos lleva a preguntarnos: ;La versin anéloga en espacio-
tiempos curvos es valida? En este articulo investigamos la posibilidad de encontrar solitones en un espacio-tiempo 4-dimensional curvo,
usando un modelo simple y con ayuda de un anélisis numérico, encontrando que cxiste una solucion estdtica de la ecuacién de onda no lineal.

Esto prueba que en un espacio-tiempo curvo es posible encontrar soluciones solitdnicas a diferencia de un espacio-tiempo plano.

Descriptores: Solitones

PACS: 02.60.Cb; 02.60.Lj; 11.10.-z

1. Introduction

Solitons are special solutions of non-linear wave equations.
The most relevant characteristic of solitons is that they are
localized static solutions. The simplest example consist of a
single scalar field ¢ in one spatial and one temporal dimen-
sions. Perhaps the most famous one is the sine-Gordon soli-
ton [1,2].

At first sight, it can be thought that a wave equation with a
single scalar field in more than three spatial dimensions with
solitonic solutions can be found. However there is a Virial
theorem which restricts this possibility. Here we are going to
transcript that theorem and it’s proof for the convenience of
the reader [3]:

Theorem. There are no non-trivial static solitary waves of
systems with scalar fields when the space dimensionality is
three or more and when the lagrangian has the form:

Lo D) = 5@ ~U(6(0), ()

with ¢ = [¢,(x,t); © = 1,...,N] a set of N coupled scalar
fields in D space plus one time dimensions, and U (¢(x,t)) a
positive definite potential.

Proof. A static solution ¢(x) obeys

ou
Vip = —=(x), 2
¢ 3 ¢( ) ()
where V? is the Laplacian in D dimensions. This equation
clearly correspond to the extremum condition W = 0 for
the static energy functional

Wig) = /de [%wp V0 + U(é(x))
= Vi[g] + Vo[d], 3)

where the functionals V| and V, stand for the two terms on
the right-hand side. Note that not only W but also V, and V,
are non-negative. Now, let ¢, (x) be a static solution. Consi-
der the one-parameter family of configurations

éx = ¢ (Ax). C))
It is easy to check that
Wigs] = Vi[,] + Va[¢,]
= X7PV[6,] + AP V5[0 (5)
Since ¢,(x) is an extremum of W{¢), it must in particu-

lar make W [, stationary with respect to variations in \;
that is,

d
W =0 at A=1. (6)

Differentiating Eq. (5) using Eq. (6) gives us
(2 - D)V,[¢,] = DV,[4,]. N

Since V| and V, are non-negative Eq. (7) cannot be satisfied
for D > 3 unless Vi[¢,] = V,[¢;] = O. This means that
¢,(x) has to be space-independent and equal to one of the
zeros of U|[¢). This is just a trivial solution and the theorem
precludes non-trivial space-dependent solutions. q.e.d.
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For the case of D = 2, Eq. (7) tell us that V,[¢,] = 0.
The simplest example of a solution of this kind is the non-
linear O(3) model [4-6] relevant in the description of the
statical mechanics of an isotropic ferromagnet.

We are interested in the possible existence of a static so-
lution of a system in a curved space-time in three spatial and
one temporal dimensions. We will construct a simple model
and look for solitonic solutions numerically.

2. The model

Consider the simplest case in a curved space-time. One scalar
field whose equation of motion is
vy ¢V

00, ¢ 36 0. ®)
With a static potencial Eq. (8) is the Laplace equation,whose
solutions take a maximum or minimum value only at the spa-
tial boundaries. If we solve the Laplace equation in a space
with a connected boundary or in a compact space, the solu-
tion in every point of the space will necessarily have the same
value as in the boundary (i.e. a trivial solution).

So we are going to introduce a potential V = (¢? — 1)?
in analogy with the 1 + 1 dimensional case. Moreover, we
consider the simplest kind of spatialy compact universe, the
static Einstein universe:

ds® = —dt? + dx? + sin® x(d#? + sin® 8dp?).  (9)

Equation (8) in the space-time corresponding to Eq. (9) takes
the form

. 8¢ 0%¢ 8¢
2 _ 1y 29 _ 099 Loe
2(¢° — 1)2¢ ol o +200txax
. oo . 8¢ ., o, 0°
2. 2 2 2
+ sin xcotGae + sin X352 + sin® x sin 68<p2' (10)

We are interested in static solutions and with spherical

simetry so we have

d*¢ do )

2cot x— — 4¢(¢* — 1) = 0. 1

ge T2otxg, —4e(e” -1) (1)
This is an ordinary differential equation of second order.
Equation (11) can be separated in 2 ordinary equations of
first order. Let

_ 4

T, =¢ and I2_dx (12)
s0, Eq. (11) can be written as the following system:
dz
T, = —d;l, (13)
dz, 2
0= E+2$2C0tx—4$1(131 -1). (14)

These equations can be integrated by the Runge-Kutta
method [7].
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FIGURE 1. Integration for the initial values @2 and ¢}. Obviously
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FIGURE 2. Integration after the application of the Newton-Raphson
method. We can see that ¢,(7/2) = ¢,(7/2) and ¢,(7/2) =
¢y (m/2). This is a solution of the equation of motion (11).

We note that Eq. (11) is singular at x = O and x = 7, so
we use the following initial conditions:

d¢(0)

$(0) = ¢?, 71;(—=a32=0, (15)
d )
o(x) = ¢p, ‘Z(;) = ¢y = 0. (16)

So we have Eq. (11) with boundary conditions at the two end
points. It can be solved using a “shooting to a middle point”
method, with ¢ and ¢ as shooting parameters. The main
idea of this method is the following: we perform an integra-
tion from x = 0 to x = /2 obtaining ¢,(7/2). Also we
integrate from x = 7 to x = /2 obtaining ¢, (7/2). Now,
let us construct the following function (f: R? — R?):

F(42,69)= [% (%) —m(%) 9 (g) —éb(;i)]. an

The first integration allows us to evaluate F' obtaining in
general F(¢0,¢%) # 0 (Fig. 1). We are interested in the ze-
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ros of this function, because at those points the solutions of
the integration match ¢ and ¢ in a smooth way. We used the
Newton-Raphson method to find the zeros of a function [7],
and the result is showed in Fig. 2.

3. Conclusion

We have shown that the theorem that precludes the existen-
ce of solitonic solutions to systems based in saclar field in
3 + 1 or more flat space-time dimensions would be false if
extended to the curve space-time case. We have done so by

explicitly constructing one such solitonic solution of a sim-
ple model based on a single scalar field in the static Einstein
universe.

This is another indication{®) that the interplay of curved
space-time physics and soliton physics allow us for richer
phenomena than each either of the two fields on its own.
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(@) The most widely known example of this phenomenon arose in
the consideration of Einstein-Yang-Mills theory where solito-
nic solutions have been found while it know that these are not
such solutions in the Yang-Mills theory in Minkowski space-
time [8].
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