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The electric potential and intensity fields, as well as the energy of a point clectric charge between confocal hyperboloidal electrodes is
evaluated as a superposition of prolate spheroidal harmonics using the Green-function technique. This study is motivated by the need to
model the electric field between the tip and the sample in a scanning tunneling microscope, and it can also be applied to a conductor-
insulator-conductor junction.
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Los campos de potencial y de intensidad eléctrica, asi como la energia de una carga cléctrica puntual entre electrodos hiperboloidales
confocales sc evaluan como superposiciones de arménicos esferoidales prolatos usando la técnica de la funcién de Green. Este estudio ha
sido motivado por la necesidad de modelar el campo eléctrico entre la punta y la muestra de un microscopio de tunelamiento y barrido, y se

puede aplicar también a una unién de conductor-aislante-conductor.

Descriptores: Campo y energia eléctricos; microscopia de barrido y tunelamicnto
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1. Introduction

The writing of this paper was motivated by the work *“Tip-to-
surface distance variations vs voltage in scanning tunneling
microscopy (STM)” of Seine et al. [1]. The authors describe
the STM junction geometry in terms of a tip shaped as a hy-
perboloid of revolution and of a sample surface as an infinite
plane (that can be regarded as a particular case of a hyperbo-
loid). The problem then consists in determining the electric
potential between both electrodes. They consider such a po-
tential to be the sum of electrostatic and image potentials.
The electrostatic potential is given in Ref. 1 as an analyti-
cal expression citing [2], which is inconsistent in their use of
the hyperboloidal coordinate and in their application to non-
confocal hyperboloids as commented in Refs. 3 and 4. The
authors of Ref. 1 also introduce 2 modified three-dimensional
Simmons model for the image potential, recognizing that the
original Simmons model deals with plane junctions {5, 6]
and making the modifications for the hyperboloidal geome-
try. They also state “The exact form of the image potential for
this geometry has not been computed”.

The purpose of this paper is to show how the electric po-
tential of a point charge between two confocal hyperboloi-
dal electrodes, each at a fixed potential, can be constructed
as a superposition of prolate spheroidal harmonics using the
standard Green-function technique [7]. The construction is
carried out by obtaining the general solutions of the Lapla-
ce equation and in particular the electrostatic potential ari-
sing from the potential difference between the electrodes, in
Sec. 2. The Dirichlet Green function, or potential of a unit
point charge between the grounded electrodes, is construc-
ted as a series of prolate spheroidal harmonics in Sec. 3. The
clectric potential and intensity fields of an electron between
the grounded electrodes, and the induced charges on the elec-

trodes are evaluated in Sec. 4. The potential arising from the
induced charges and the energy of interaction of the electron
with such charges are evaluated in Sec. 5. The closing sec-
tion contains a discussion of several points of didactic value
and about the specific applications to STM and conductor-
insulator-conductor junctions.

2. Separation and solutions of Laplace equation
in prolate spheroidal coordinates

The prolate spheroidal coordinates (7,£,p) are defined
through the transformation equations to cartesian coordina-
tes (8]

e/ (n* = 1)(1 - &%) cos,
y=cv(n* —1)(1- &%) sengp,
z2=cnk. (1)

The constant parameter ¢ determines the positions of the
focii (¢ = 0, y = 0, z = =c) on the z-axis. Each value
of 1 < 1 < oo defines a prolate spheroidal surface cente-
red at the origin with a major axis 2cn along the z-axis and
minor axes 2¢(n? — 1)1/2 in the z-y plane. Each value of
—1 < ¢ < 1 defines a hyperboloid of revolution with cen-
ter at the origin, a real axis 2c£ along the z-axis and ima-
ginary axes 2¢(1 — €2)!/2 in the z-y plane; the z-y plane
corresponds to & = 0, and the hyperboloids with £ > 0
and £ < 0 open upwards and downwards, respectively. The
coordinate 0 < ¢ < 2w is the usual azimuthal angle, and
each of its values defines a meridian half-plane. For example,
(1 <1<00,€=x1,0< ¢ <27m)models the tip of the STM
and (1 €< 1 < 00,¢ = 0,0 < ¢ < 27) the plane surface of
the sample.
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The evaluation of the differential displacement
dF =idr +jdy + kdz
=nh,d,+&hede + P h,dy )

leads to the identification of the scale factors

n? - & /n -§
h,=c¢ o1 —er
h, =cv(n* — 1) (1 - €?) (3)

and the orthogonal unit vectors

A 77\/1___‘55 (2 cosp + j senyp) +f\/77_—_—k
Vn? =&

é —&/m2 =1 (i cosp+jseng) +n/1—- €k

| Vo |

@ = —iseny+ ) cosyp. @)

Correspondingly, the Laplace equation takes the explicit
form

1 0 0 0 0
e [6—77 " =1 5, + 56 1-€) 3_6]
1
e o=

It admits separable solutions of the type

f(m.&,9) = HmE()2(v)

in which each factor satisfies the respective ordinary differen-
tial equation

3 2}f(n &) =0. (5

d , , d m? _
[% (n* - 1) an ;;T:—l] H(n) = €€+ 1)H(n), (6)
d o d m? oy -
[EZ (1-¢%) " 1—_?J 2(6) = ¢+ 1)—(§), @)
2

Both Egs. (6) and (7) are identified as the Legendre equa-
tion in the respective intervals 1 < n < coand -1 < ¢ <1,
and Egq. (8) and its solutions are well-known. Therefore, the
general solution of Eq. (5) can be written as

Z Z (AT P (n) + B (1))

=0 m=—¢
x [CT'P{(€) + DFQF(6)] €™ (9)

f(n,€,0) =

in terms of the Legendre functions of the first and second
kinds.

As an illustration, we can evaluate the electrostatic poten-
tial ®5(n, £, @) associated with the hyperboloidal electrodes

& = & and € = {2 kept at the potentials V] and V), respecti-
vely. The boundary conditions

= Vl and ¢es(n’€ = Eza ‘/’)

Pes (M,€ = &1, ) =V, (10)

exclude the 7 and ¢ dependent terms in Eq. (9), thereby res-
tricting the solutions to the lowest harmonic with £ = 0 and
m = 0, and in addition BJ = 0. Then the electrostatic poten-
tial satisfying Egs. (10) takes the explicit form

J QolE) = Qu(6)
'Q,(6) — Qul&)

+V,

¢es (n) 6) (p)

Qo(f) — Qo(&l)
Qo(fz) - Qo(fl).

In particular, the solution for the STM follows by taking
& = 0 for the sample surface and §; = 1 for the microsco-
pe tip. The reader has already been warned [3, 4] about the
inconsistent uses of the hyperboloidal coordinate and of the
electrostatic potential for confocal hyperboloidal electrodes
in Ref. 1.

(1

3. Construction of the Dirichlet Green function
for confocal hyperboloidal boundaries

The Green function satisfies the Poisson equation for a unit
point charge [7]

1 0 0 0
&mﬁﬁﬂaﬁ“”€+&(

G (&' €, ¢")

0

1 - ¢2
é)€

n

1 6?
c?(nﬂ—l)(l—e)b"?}
5(77 7)o (E—€)d(p—¢')

= hyheh,, - (12

The Dirichlet Green function of interest in this work sa-
tisfies the boundary conditions of grounded confocal hyper-
boloidal electrodes

GD (77,6 = fl,¢;ﬂ',fl,<ﬂ’) =0

and
Gp (n,€ =&, 00,6 ,9") =0. (13)

Since Eq. (12) reduces to Eq. (5) for all points of space
except the position of the point source (7', &', ') its solutions
are of the harmonic type of Eq. (9). The boundary conditions
of Egs. (13) can be satisfied by applymg them to the £ depen-
dent functions

C P (&) + DQ7 (&) =0

and

Cr P (&) + Di"Q(&2) = 0. (14)
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This is a set of two algebraic linear homogeneous equa-
tions in the unknown coefficients C7"* and Dj*. It has nontri-
vial and nonvanishing solutions only if its determinant vani-
shes

P (6)Q7 (&2) — Q7' (&) P (&2) = 0. (15)
This happens only for an infinite set of discrete values

£=)s, $=1,2,3,..., (16)
which are not necessarily integer numbers. These values ha-
ve to be determined by solving numerically the trascendental
Eq. (15) using the hypergeometric function representations of
the Legendre functions [9]. The ratio of the unknown coeffi-
cients follows from Eqs. (14) and (15) and can be written in
two equivalent forms

cro__Qr&) __Qre) -

by Pr&) P(&)

Correspondingly, the £ dependent functions can be writ-
ten in the alternative forms

ER(6) = N3 [QF (&) PT(E) -
= N,\, [Pn: (51) Q,\,(f) -

P (£)Q% (9)]
QY (&) P(9)], (18)

which are solutions of Eq. (7), satisfy obviously the boundary
conditions of Eqs. (14), and are orthonormal in the interval

&L <E<E

p dé_m (E)E:\T:, (5) = 0g4r- (19)

The orthogonality follows from the identification of
Eq. (7) as and eigenvalue problem and the normalization
constants in Egs. (18) can be choosen to ensure that the inte-
gral of Eq. (19) is one when s = ¢’

The orthonormal set of prolate spheroidal harmonic func-
tions, which are the product of the £ dependent functions of
Eq. (18) and the orthonormal Fourier functions in the azimut-
hal angle, is also a complete set

[o <IN ]

> X

s=l m=—occ

m(p—p')

EX(€)EX, (é) =

§(6£-€)0(p—-¢). (20

Then the solution of Eq. (12) can be written as a series of

these prolate spheroidal harmonics, incorporating the sym-
|

Gp (& e’ €, ¢")

where 1< and 7> are the smaller and the larger of 7 and 7)'.

metry of the Green function under the exchange of the field
and source points

G,D (U,fﬂp, n,v £,a‘p’) =

eim{v—¢')

Y Y RN EFEO—FG— o

s=l m=-o0

The “coefficients” in this series gT* (n,7') follow from
the substitution of Egs. (21), (20) and (3) in Eq. (12), using
Egs. (6)—(8) and the linear independence of the prolate sphe-
roidal harmonics to obtain

2

d d m
(n? —1)%")\ (/\s+1)‘"2—_7 gy, (mn') =

dn
4
-=5(n-n). @

This equation for 7 # 7’ reduces to Eq. (6), suggesting the
choices

g (mn') = AT.QY (0') P(n) for n<n  (23)

and

ax. (mn) = ALPR () QY (m) for n>q', (24)

which ensure the continuity of the Green function for n = ¢’
and its symmetry under the exchange of 7 and n’. The inte-
gration of Eq. (22) around n = n’

2 dgy (n,n')
(n*-1) ~dan

n=n"_

dgy (n,71")
— 2 — _'\‘__
(77 1) dn

leads to the determination of the coefficient AA , using
Eq. (24) for the first term and Eq. (23) for the second term

AT ("% = 1) [PT (n') —=5— Q (n)
m ,dP,(',‘(ﬂ') _ 4
-Qx, (U)T =-—_-- (@6

The expression inside the brackets is the Wronskian for the
Legendre functions which is equal to —1/(n? — 1), and the-
refore AT is simply 47 /c. Thus, the complete expression for
the Dirichtet Green function is

: ?
etm(gp—gp )

77< QA. (77>)-,\ €3 ):f\n,(f)—%— 27
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4. Electric potential field intensity and induced charges for an electron between grounded confocal
hyperboloidal electrodes

‘When an electron is located between the grounded confocal hyperboloidal electrodes, the electric potential of the system is
given by the product of the charge of the electron and the Dirichlet Green function constructed in the previous section

Im(‘l""'@t)

4
O (M, & PiMerEerPe) = —€Gp (1,60, &er ) = WEZ Z P () QT (5) E (€, Z0 (€)= o (28)

s=1 m=-—-00

This potential is the superposition of the Coulomb potential of the electron and the potential associated with the charges induced
in the electrodes.

In scanning tunneling microscopy and conductor-insulator-conductor junctions the energy of interaction of the electron
with the charges induced on the electrodes i1s one of the important contributions to the barrier to be tunneled through. The
evaluation of this energy contribution could be attempted by evaluating the energy of the electron in the potential of Eq. (28)
and substracting the energy of the electron in its own Coulomb field, but the reader will realize that both enrgies are infinite.
As anticipated in the Introduction, the evaluation of the potential due to the induced charges and the energy of interaction of
the electron with them will be presented in Sec. 5. Such an evaluation requires the previous determination of the electric field
intensity and charge distributions on the electrodes, which is done in the remaining of this section.

The electric field intensity 1s obtained as the negative gradient of the potential of Eq. (28),

— a p; 8
E(??TETW'F??er{e?(roe):_ }:h 677 ,f 85 2 hgﬂ}‘ﬁ(ﬁrf:«‘:ﬁ”e:&e:@e)
4 1 d ' ,
- ”;m;w{-,;’-g— P (1) Q5 (1)) 5. (©
~ - d-m (5) .. - . o o im{Y—@e)
P01 QF ) 5 + 1B (1) QF, (1) ZR. (9 m 1R, (6) T 29

Two observations about this expression are pertinent at this moment. The components in 7 show a discontinuity at np = 7,
and lead upon integration over the area of any closed surface containing the point (n = 7,,6 = €,,p = p,) to —4ne, in
agreement with Gauss’ law. The components of the field in 7 and ¢ at the positions of the electrodes § = §; and { = £, vanish
on account of Eq. (18), and its net components in £ are perpendicular to the grounded hyperboloidal electrodes. The latter serve
to evaluate the surface charge density distributions on the respective electrodes, by applying Gauss law

N E=E,, = 3 im{p—¢,)
016 = 61,9) = ° (nfw ) =Y D A QR (15) 3R (6) — d(;) —— G0
s=1l m=—o £=¢,
h'E* S = G2 - - 1 m —m az E im{e=¢.)
o(n,€=¢&,p) = §: (nfﬂ 62 ¢) =—Ez Y PP (n0) Q% (15)ER (&) h)‘:iif) - o (31)
§=1 m=—-00 lE=¢,

The total charges on each electrode are obtained by integrating Egs. (30)—(31) over the respective surfaces

m m ) 1 dEm Eim({pu{‘a")
Q; = Z Z / / hpdnh ,dpP{" (n ) QY (ns) EX. (ée)—f;- d"-"‘- ; (32)
s§=]1 m=—00 3 £ £=¢€, U
for 2« = 1, 2. The combination of the scale factors using Egs. (3) 1s
h.h ‘
2 =c(1-¢}). (33)
h&

On the other hand the derivatives of the ¢ dependent functions evaluated from Eqs. (18) are the Wronskians of the Legendre
functions

d=p r dQ dP(ENT -
L) e SR - gp ) | = A - g
X 1 ) -
and
dﬂm (&-2) M ] . dp,{f(fz) Qm (62) . m 2\—1
S = VR QR (6) = — PRE) | = N - ) 34
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The integration over the azimuthal angle in Eq. (33) selects ~ And the sum of the charges induced in the grounded electro-
only the term withm = 0. The integration over the spheroidal ~ des is

coordinate 7 can be performed from Eq. (6) giving the reci-

procal of the eigenvalue. Then the expressions for the charges Qi +Q,=e Z
on the electrodes become

N’\ + N’\ ):/\, (Ee)
As (As +1)

(36)

Z Ny, Ea, §e Q,=e¢ Z Ny, Ea, (&) 35) It is straightforward to check that the sum in Eq. (36) is the
As (/\ +1) 2T As(As+1) representation of 1 as a series in the basis of orthonormal

functions of Eq. (18), for any position of the electron £ = £,
| so that the total induced charge is e.

5. Electric potential due to induced charges and energy of interaction with the electron

The surface charge densities induced by the electron in the electrodes, Eqs. (30)-(31), and the free space Green function
expressed as a prolate spheroidal harmonic series

1 dr &S eitlo—o1)
Gr (n.& 05, 8¢) = o = 2 2 Pl () Qf (n>) NP (E) N PE(E) —5- (37)
=0 u=—¢
are the ingredients to evaluate the electric potential of those charges
2 oo 2m
¢ind (77’{1@) = Z/ / hn' d’l’ h'g;' d‘rol GF (77, {a‘pa n’sgly ‘Pl)U(TI'»f/NP/) (38)
i=1 Y1 0

&'=¢,

by integrating their product over the areas of both electrodes. Notice that the combination of the scale factors in Eq. (38),
including the one in Egs. (30)—(31), is the same one as that of Eq. (33); and also the derivatives of Egs. (34) are common to
the integrals of Eqs. (32) and (38). The integration over the azimuthal angle ¢ leads to the selection rule 4 = m for the sums
from Eqgs. (37) and (30). The integration over the spheroidal coordinate 7' requires distinguishing the cases of n < 7, and
n > 1., and dividing the interval 1 < 7 < oo in three subintervals for each case. The integrals of the products of two Legendre
functions one of order £ and the other of order A have closed forms obtainable from the respective differential equations of the
type of Eq. (6). The final result is

o0 oo 14
d)ind (77 S ne’é)(p) = Z Z Z [Arm]\ 1711)[ (fl) + Nmz\{;npem (52)]

cm o QUM)PM) = Q% () P(m) . eim(eme)
x‘—‘/\,. (fe) /\5(/\3+1)—€(€+1) Nl Pf (é.)—'n" (39)
dre oo 0o [4
Gina (12 0es60) = == 33 D [NUNPPE (§) + NUNP PP (6)]
=0 s=1m=—¢
= P () QF () = P () QX (M) 1 e €979
s (&) N+ 1) _€(€+ 0 NP (&) —5— (40)

The reader can check that this electric potentials is continuous at 77 = 75.. Also, the electric intensity field evaluated as the
negative gradient of Eqs. (39)—(40) is continuous at the position of the electron 7,. In this way, the electric potential of Egs.
(39)-(40) is equivalent to the difference between that of Eq. (28) and the electron Coulomb potential.

The energy of interaction of the electron and the charges induced in the electrodes is half the product of the charge of the
electron and the electric potential of Eqs.(39)—(40) at the positon 7 = 7,

Tt

0o oc 4

1 Y m prm 1n

Uind(Fe) = _§e¢ind( T]eaf Eer‘p (pe —‘%ZZ Z [N/{’:Nlmpfl (§I)+N A’Il, (62)]
(=0 s=1 m=-¢

P (n.) QY (me) — P (n) Q% (1)
As( Mg +1) = 2(£+1)

X=X, (Ee) NPt (€,) - (41)
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6. Discussion

Equations (11) and (39) describe the electrostatic potential
due to the potential difference between the confocal hyper-
boloidal electrodes, and the electric potential due to the char-
ges induced in the grounded electrodes by the presence of the
electron between them, respectively. For the electron between
the electrodes with a potential difference, the total electric po-
tential is the superpositon of the electrostatic potential given
by Eq. (11) and the electric potential of the electron betwe-
en the grounded electrodes given by Eq. (28). The energy of
the electron in such a situation is the sum of its electrostatic
energy —ede (7, &er .) and its energy of interaction with
the charges it induces in the electrodes of Eq. (41). These are
the energy contributions to the potential barrier of interest
in wnneling devices, such as STM and conductor-insulator-
conductor junctions, modeled with confocal hyperboloidal
electrodes. The detailed construction of the needed quanti-
ties to evaluate both energies has been carried out in Sec. 2
and 3 of this work, filling in the gap that was recognized in
Ref. 1.

Some remarks are pertinent about the work of the Cen-
tre d’Elaboration des Materiaux et d’Etudes Structurales [1].
The electrostatic potential they use corresponds to Eq. (11),
but with the wrong argument in the Legendre functions
Q,(cosh §). Their application of the same formula to non-
confocal hyperboloids does not satisfy the Laplace equation
and is thereby not valid. Their extension of Simmons model
for the image potential of plane junctions to the hyperboloi-
dal geometry is based on the same assumption of nonconfocal
hyperboloidal equipotentials, which can not be justified.

Some warnings about the terminology are also necessary.
The term image potential was introduced by Simmons for pa-
rallel plane electrodes [5, 6]. For this geometry the method of
images is applicable and the adjective is justified. However,
Eqgs. (6)-(8) [6] giving the explicit form of the image poten-
tial

= (CerE Slerss w))

n=1

is not an electric potential. It is actually the energy of inte-
raction of the electron with the image charges that it induces
in the grounded plane electrodes. Since the method of ima-
ges is not applicable to the hyperboloidal geometry, the use
of the adjective image can be misleading. It is preferable to
spell out the physical situation at hand to make it understan-
dable, for instance Eq. (28) describes the electric potential of
the electron between the grounded electrodes, Eqs. (38)-(40)
describe the electric potential due to the charges induced in
the electrodes, and Eq. (41) describes the energy of interac-
tion of the electron and the induced charges.

In this work cgs electrostatic units have been used and the
space between the electrodes is assumed to be empty. If such
a space is filled in with a material with a dielectric constant
K, the right hand sides of Eqs. (28) and (39)—(41) have to be
divided by K.

The final remark is that Eqs. (11) and (41) are the correct
and consistent descriptions of the electrostatic and induced
charge energy contributions to the potential barrier for confo-
cal hyperboloidal electrodes, which may serve as the starting
point to redo the work of Ref. 1 and to analyze the tunneling
in conductor-insulator-conductor junctions.
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