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Body motion in a resistive medium at temperatureT
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We consider a macroscopic body propagating in a one-dimensional resistive medium, consisting of an ideal gas at temperatureT . For a
whole family of collisions with varying degree of inelasticity, we find an exact expression for the effective force on the moving body as a
function of the body’s speed and the value of the restitution coefficient. At low and high speeds it reduces to the well-known Stoke’s and
Newton’s law, respectively.

Keywords:Air drag; collisions.

Se considera un cuerpo macroscópico propaǵandose en un medio resistivo unidimensional, consistente de un gas ideal a temperatureT . Para
toda una familia de colisiones con diferente grado de inelasticidad, hallamos una expresión exacta para la fuerza efectiva sobre el cuerpo
como funcíon de la velocidad del cuerpo y del coeficiente de restitución. A bajas y altas velocidades, se reduce a la conocida ley de Stoke y
Newton, respectivamente.

Descriptores:Roce viscoso; colisiones.

PACS: 45.20.Dd; 45.50.Tn

1. Introduction

When an object moves through a viscous medium, such as
water or air, it experiences a resistive drag force. For small
objects such as dust particles moving at low speeds, this
drag force is proportional to the speed of the object. This
is known as Stoke’s law [1]. For larger objects such as air-
planes, skidivers and baseballs moving at high speeds the
drag force is approximately proportional to the square of the
speed [2]. This limit is known as Newton’s law. The gen-
eral problem of determining the exact dependence of the drag
force on the speed of an arbitrarily-shaped object moving at
any speed, defies any closed form solution given its complex
many-body character. A complete solution would have to
take into account the detailed scattering process between the
body and the particles composing the medium, the thermal
properties of the medium, the presence of possible internal
degrees of freedom of the body and local turbulence effects,
etc. However, beneath all these complexities is basically the
transfer of momentum and energy between the body and the
medium particles. Therefore, is instructive to consider sim-
plified “toy” models where one can track in detail the mo-
mentum and energy exchange between the body and its sur-
rounding medium. This is realized at the expense of simpli-
fying other factors such as the dimensionality of the system
or the specific form of the interactions between the body and
the medium. In this spirit, we present here an extension of
a previous [3], simplified zero-temperature one-dimensional
model, where we now include finite temperature effects. This
immediately brings into the game a natural velocity scale not
present in our previous model: the thermal speed. We ob-
tain the resistive drag force as a function of the body’s speed
in closed formand find that, when the speed of the body is

smaller than the thermal speed, the resistive force islinearly
proportional to the speed of the body. On the contrary, when
the speed of the body is greater then the thermal speed, the
proportionality becomesquadratic.

2. The model

Let us consider a (macroscopic) body of massM propagat-
ing in a one-dimensional resistive medium modelled by an
ideal gas in thermodynamic equilibrium at temperatureT ,
characterized by a thermal speedVT ≡

√
kT/m, wherek

is Boltzmann’s constant andm is the mass of a medium par-
ticle (Fig. 1). We assume the body to be truly macroscopic,
like a baseball moving through air, or a falling rock. In other
words,M À m which allows us to make the following sim-
plification: During a medium particle-body collision event,
we will take the mass of the body to be essentially infinite.
In this approximation the body is pictured as a massive, par-
tially absorbing, moving “wall” colliding constantly with the
medium particles. A reasonable assumption, if one consid-
ers that the mass ratiom/M is of the order of10−24 for a
baseball moving through air. After each collision, the speed
of the body is essentially unchanged, so the magnitude of the
momentum transferred to the body is

∆p ≈ (1 + ε)m|V − v|,
whereV is the speed of the body,v the speed of the medium
particle andε is the restitution coefficient for the body-
particle collision. Thus, whenε = 1 we have a completely
elastic collision, where the magnitude of the relative body-
particle velocity is conserved, while atε = 0, we have the
case of a completely inelastic collision, where the particle is
“absorbed” by the body after colliding. We also work in a
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quasi-continuum approximation where an element of length
dx while “small”, will contain a large number of medium
particles.

FIGURE 1. A macroscopic body of massM propagating inside a
one-dimensional resistive medium composed of an ideal gas of par-
ticles of massm, with m ¿ M , in thermal equilibrium at temper-
atureT . The body undergoes partially elastic collisions with the
medium particles with restitution coefficientε.

Initially the body is given a speedV0 (say, to the right),
and we observe the system at a later timet, when the speed of
the body isV . During the next time intervaldt, the body will
collide with particles coming from its left and right side. On
the left side, only those particles that have speedsv > V and
are located closer than(v − V )dt will collide with the body.
The number of such particles isdnL = ρdn(v)Θ(v−V )(v−
V )dt. In a similar manner, the number of particles to the right
of the body that will collide with the body during the interval
dt is dnR = ρdn(v)Θ(V − v)(V − v)dt. Hereρ is the parti-
cle number density,Θ(x) is the step function (Θ(x) = 1, for
x > 0, zero otherwise) anddn(v) is the number of particles
that have speeds in the interval[v, v + dv]: dn(v) = g(v)dv
whereg(v) is the thermal speed distribution, given by

g(v) = (1/
√

2π)
1

VT
exp[−1

2
(v/VT )2]. (1)

The transfer of momentum per unit time coming from the
medium to theleft of the body, due to particles with speed in
the interval[v, v + dv] would then be

dP

dt
= (1 + ε)m(v − V )g(v)Θ(v − V )(v − V )dv. (2)

By integrating over all speeds, we obtain the average effec-
tive force on the body from the left side:

F left =
∫ ∞

V

ρm(1 + ε)(v − V )2g(v)dv. (3)

In a similar manner, the transfer of momentum per unit time
coming from the medium to theright of the body, due to par-
ticles with speed in the interval[v, v + dv] is

dP

dt
= −(1 + ε)m(V − v)g(v)Θ(V − v)(V − v)dv, (4)

which implies that the average force on the body from the
right side is

F right =
∫ V

−∞
ρ(1 + ε)(V − v)2g(v)dv. (5)

The net average forceF on the body, along the direction of
its initial velocity, is given by the difference between Eqs. (3)
and (5):

F = −mρ(1 + ε)
[ ∫ V

−∞
ρ(1 + ε)(V − v)2g(v)dv

−
∫ ∞

V

ρm(1 + ε)(v − V )2g(v)dv

]
.

By inserting expression (1) forg(v) and carrying out the in-
tegrations, we obtain

F = −mρ(1 + ε)V 2
T

{√
2
π

(
V

VT

)
exp

[
−1

2

(
V

VT

)2
]

+

(
1 +

(
V

VT

)2
)

Erf

(
V√
2VT

) }
(6)

This rather complex-looking expression is a bit deceiv-
ing since it depends on negative exponentials of(V/VT )2

which makes it very sensitive to whetherV/VT < 1
or V/VT > 1. In other words, we expect two, well-
defined behavior regimes, with a small crossover region near
V/VT ≈ 1.

3. Results and discussion

As can be clearly seen from (6), the degree of inelasticity
plays only a minor role, renormalizing the number density
of the medium. Figure 2 is a log-log plot of the effective
average force on the body as a function of the speed of the
body, Eq.(6). As anticipated above, we note that except
for a small vicinity aroundV = VT , it consists of basi-
cally two straight lines with slopes of one and two, respec-
tively. That is, at speeds smaller than the thermal speed
VT , the resistive force is proportional to the body’s speed
(Stoke’s law); while for body’s speeds greater thanVT , the
resistive force becomes quadratic on the body’s speed (New-
ton’s law). These limits are easy to derive from Eq.(6):
For V ¿ VT , Erf(V/

√
2VT ) ≈

√
2/π(V/

√
2VT ) and

exp[−(1/2)(V/VT )2] ≈ 1, which implies:

F≈−
√

8/πmρ(1 + ε)VT V =−ρ(1 + ε)
√

8mkT/π V

V ¿ VT . (7)

On the other hand, whenV À VT , Erf(V/
√

2VT ) ≈ 1 and
exp[−(1/2)(V/VT )2] ≈ 0. Thus, in this case one has:

F ≈ −mρ(1 + ε)V 2 V À VT . (8)
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FIGURE 2. Effective average force on the macroscopic body, as
a function of the body’s speed. For speeds smaller (higher) than
the thermal speed, the dependence is essentially linear (quadratic).
The crossover region is confined to a small vicinity aroundVT .
(F0 ≡ mρ(1 + ε)V 2

T ).

Let us now consider the issue of the stopping distance.
For a medium at a finite temperature, the speed of the body
decreases (on a macroscopic scale) as it moves through the
medium and will eventually become smaller than the thermal
speed. At that point, the resistive force becomes proportional
to the speed,F = −β V . A simple integration then leads to
an exponential decrease onV and therefore, afinite stopping
distance. If the medium is at zero temperature however, the
resistive force is always quadratic with speedF = γV 2 and,
in that case, it can be easily proved that the stopping distance
diverges logarithmically with time [3].

In summary, we have examined a simplified model
of a macroscopic object propagating in a resistive one-
dimensional medium modelled as an ideal gas at temperature
T . For general inelastic collisions between the body and the
medium particles, characterized by a restitution coefficientε,
0 ≤ ε ≤ 1, we have arrived at a closed-form solution for
the resistive force in terms of the speed of the body. Below
the thermal speed, this force is essentially linear in the body’s
speed, while above thermal speed, the dependence becomes
quadratic.
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