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Using the technique of supersymmetric quantum mechanics we present new cosmological quantum solutions, in the regime for FRW cosmo-
logical model using a barotropic perfect fluid as matter field.
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1. Introduction

We are interested to study some cosmological models in the
supersymmetric quantum mechanics scheme. Recently, par-
ticular exact solutions to the Wheeler-DeWitt (WDW) equa-
tion in Witten’s [1] supersymmetric quantum mechanics for
all Bianchi Cosmological Class A Models in the Einstein the-
ory were found [2].

Our goal in this work is to try to solve an ambiguity in the
factor ordering of the position and momenta operators and
give selection rulesthat fix the parameter that measures this
ambiguity. Such ambiguities always arise, when there are
expressions containing the product of non-commuting quan-
tities that depend onqµ and Pµ as in our case. It is then
necessary to find some criteria to know which factor ordering
should be selected. The factor ordering in the semiclassical
approximation is irrelevant, but not so in the exact theory. In
a previous work [2] the global factor was dropped by hand
and the factor ordering ambiguity was avoided when they fac-
torized the WDW equation.

Thus, the idea of Witten [1] is to find the supersym-
metric super-charges operatorsQ, Q̄ that produce a super-
hamiltonianHss, and that satisfies the closed superalgebra

{
Q, Q̄

}
= Hss, [Hss, Q] = 0,

[
Hss, Q̄

]
= 0, (1)

where the super-hamiltonianHss has the following form:

Hss := H0 +
∂2Σ(x, y)
∂qν∂qµ

[
ψ̄ν , ψµ

]
, (2)

hereH0 is the bosonic Hamiltonian andΣ is known as the
super-potential term that is related with the potential term that
appears in the bosonic hamiltonian. This idea was applied in
reference [2] for all Bianchi type cosmological models.

In this approach, the hamiltonianHss = 1
2Q2 is positive

semi-definite and a supersymmetric state withQ|Ψ >= 0 is

automatically a zero energy ground state. This simplifies the
problem of finding supersymmetric ground state because the
energy is known a priori and also because the factorization
of Hss|Ψ >= 0 into Q|Ψ >= 0, Q|Ψ >= 0 often pro-
vides a simple first-order equation for the goround state wave
function. The simplicity of this factorization is related to the
solubility of certain bosonic hamiltonians. For example, in
this work we find for the empty (+) and filled (-) sector of the
fermion Fock space zero energy solution

|Ψ± >= e±Σ|± >, (3)

whereΣ denotes a superpotential, andΨ+ andΨ− are
the corresponding components for the empty and filled sec-
tor in the wave function. We also observe a tendency for
supersymmetric vacua to remain close to their semi-classical
limits, because in this work and others [2], the exact solu-
tions (3) are also the lowest-order WKB approximations.

This paper is organized in the following way: In Sec. 2,
the ADM lagrangian of our model is constructed and also,
we propose the known classical solution for this model. In
Sec. 3, we derive the corresponding Hamiltonian that allows
us to obtain the quantum WDW equation for the FRW cos-
mological model with matter field. In Sec. 4 we derive the
WDW solution in the supersymmetric quantum mechanics
approach. Sec. 5 is devoted to conclusions.

2. ADM Lagrangian formulation

We consider the total lagrangian, where one part is geometry
and the other one corresponds to the matter field. We will
consider a perfect fluid with barotropic equation of state as
our matter field:

Ltotal = Lgeom + Lmatter, (4)
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where the lagrangian density for geometry is the usual

Lgeom =
√
−(4)g R, (5)

whereR is the Ricci scalar.

Using the metric for FRW:

ds2 = gµν(xα) dxµ dxν = −N2 dt2

+A2

[
dr2

1− κr2
+ r2

(
dθ2 + sin2θdφ2

)]
, (6)

whereN is the lapse function,A is the scale factor of the
model, andκ is the curvature index of the universe (κ =
0, +1,−1 plane, close and open, respectively)

The covariant components for the tensor metric are:

gtt = −N(t)2, grr =
A(t)2

1− κr2
,

gθθ = A2r2, gφφ = A2r2 sin2 θ, (7)

and the contravariant components

gtt = − 1
N2

, grr =
1− κr2

A2
,

gθθ =
1

A2r2
, gφφ =

1
A2r2sin2θ

. (8)

With these elements, we can calculate the nonzero Christoffel
symbols:

Γt
tt =

Ṅ
N

, Γr
tr = Γθ

tθ = Γθ
θt = Γφ

tφ = Γφ
φt =

Ȧ
A

,

Γt
rr=

−AȦ
N2 (κr2−1)

, Γr
rr=

−κr
κr2−1

, Γt
θθ =r

(
κr2−1

)
,

Γθ
rθ = Γθ

θr = Γφ
rφ = Γφ

φr =
1
r

, Γt
θθ =

ArȦ
N2

,

Γθ
φφ = −cosθsinθ , Γφ

φθ = Γφ
θφ =

cosθ
sinθ

,

Γt
φφ =

Ar2Ȧ sin2 θ

N2
, Γr

φφ = r sin2 θ
(
κr2 − 1

)
, (9)

whereȦ = dA/dt.

The Ricci scalar becomes

R =− 6
AN2

d2A
dt2

− 6
A2N2

(
dA
dt

)2

+
6

AN3

dA
dt

dN
dt
−6κ

A2
. (10)

We consider a perfect fluid energy-momentum tensor

Tµν = pgµν + (p + ρ)UµUν , (11)

wherep, ρ, Uµ are the pressure, energy density and the four-
velocity of the system, respectively. Using the covariance of
this tensor:

Tµν
;ν = 0, (12)

we obtain the following partial differential equation:

3
dA
dt

ρ + 3
dA
dt

p +
dρ

dt
A = 0, (13)

and using the barotropic state function between the pressure
and the energy density,p = γρ, with γ constant, we have
the solution for the energy density as a function of the scale
factor of the FRW universe as:

ρ =
Mγ

A3(γ+1)
, (14)

whereMγ is an integration constant.
The corresponding Einstein field equations are

G0
0=−8πGMγA−3(γ+1)+

3
A2N2

(
dA

dt

)2

+3A−2κ = 0,

(15)

G1
1 =

2
AN2

d2A

dt2
+

1
A2N2

(
dA

dt

)2

− 2
AN2

dA

dt

dN

dt

+
κ

A2
+

8πGMγ

A3(γ+1)
= 0.

(16)

We now consider the gaugeN = 1 and making some algebra
we get the following master equation for the scale factor A:

d2A

dt2
+

4πGMγ(3γ + 1)
3

1
A3γ+2

= 0. (17)

Here we use a power law ansatz

A = A0(t− t0)q, (18)

with q andA0 parameters to be determined in terms of the
parameters of the models.

Introducing this ansatz in Eq. (17) we obtain that

q =
2

3(γ + 1)
, A0 =

[
6πGMγ (γ + 1)2

] 1
3(γ+1)

. (19)

Thus, the scale factorA has the following well-known
classical behaviour [3]:

A =
[
6πGMγ (γ + 1)2

] 1
3(γ+1)

(t− t0)
2

3(γ+1) . (20)

Taking different values for the constantγ we have the fol-
lowing subcases:
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A=





[
32
3 πGM 1

3

] 1
4

(t− t0)
1
2 for γ = 1

3 radiation

[6πGM0]
1
3 (t− t0)

2
3 for γ = 0 dust

[24πGM1]
1
6 (t− t0)

1
3 for γ = 1 stiff fluid

(21)

However, for the caseγ = −1, we will solve the Eq. (17),
whose solution is exponential:

A = A0eHt, with H = 2

√
2
3
πGM−1, (22)

here, we consider the sign (+) in the exponential function,
because we consider the inflationary behaviour.

Using the line element for FRW, the density lagrangian
for geometry has the following structure:

Lgeom =
√
−(4)g R = −6A2

N
d2A
dt2

− 6A
N

(
dA
dt

)2

+
6A2

N2

dA

dt

dN

dt
− 6κNA

=
d
dt

(
−6A2Ȧ

N

)
+

6A
N

(
dA
dt

)2

− 6κNA, (23)

and the matter density lagrangian [4, 5] is:

Lmatter = −16πNρ

{
(γ + 1)

(
1 + gkm Uk Um

) 1
2

−γ
(
1 + gkm Uk Um

)− 1
2

}
+ 16πρ(γ + 1)UmNm. (24)

In Lmatter we consider the comovil fluid (Uk = 0), and the
gaugeNk = 0, obtaining

Lmatter = 16πNMγA−3γ . (25)

Finally, the total density lagrangian has the following form

Ltot =
d

dt

(
−6A2Ȧ

N

)
+

6A

N

(
dA

dt

)2

−6κNA + 16πGNMγA−3γ . (26)

3. Hamiltonian formulation

Following the well-known procedure for obtaining the canon-
ical hamiltonian function, we define the canonical momen-
tum conjugate to the generalized coordinate A (scale factor)
asΠA ≡ ∂L/∂Ȧ:

L = 6

[
A

N

(
dA

dt

)2

−NκA +
8
3
πGNMγA−3γ

]
, (27)

or in its canonical form

L = ΠAȦ−NH

= ΠAȦ−N

[
Π2

A

24A
+ 6κA− 16πGMγA−3γ

]
, (28)

where

H =
Π2

A

24A
+ 6κA− 16πGMγA−3γ , (29)

when we perform the variation of this lagrangian (28) with
respect to N,∂L/∂N = 0, implying H = 0.

The quantization procedure will be made in the usual
way, considering the momentum as operators and taking rep-
resentation for them, but it is possible to realize other type
of quantization for this same model. For example, the super-
symmetric quantum mechanics scheme [6-8] is

H → ĤΨ = 0, ΠA ≡ −i~
∂

∂A
, (30)

whereΨ(A) is the wave function of the FRW universe model.
In this work we take~ = 1.

With these assumptions, (29) is transformed into a non
linear differential equation:

Ĥ =
1

24A

[
− d2

dA2
+144κA2−384πGMγA−3γ+1

]
. (31)

In Ref. 7 was shown that closed, radiation-filled FRW
quantum universe for arbitrary factor ordering obey the Whit-
taker equation.

One important result yields at the level of WKB method,
where we perform the transformationΠA → dΦ/dA, then
(29) is transformed in the Einstein-Hamilton-Jacobi equation,
whereΦ is the superpotential function, that is related to the
physical potential under consideration.

Introducing this ansatz in (29),

H=
1

24A

[(
dΦ
dA

)2

+144κA2−384πGMγA−3γ+1

]
, (32)

thus, the superpotentialΦ has the following form:

Φ = ±
∫ √

384πGMγA−3γ+1 − 144κA2 dA, (33)

where for whateverγ the integral has the solution
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∫ √
384πGMγA−3γ+1 − 144κA2dA =

√
−144κA2 + 384πGMγA1−3γ

×
{

1
2
A +

γ + 1
3

(−1 + γ)(3A1+3γκ− 8GMγπ)

(
AGMγ

√
2π

√
−3A1+3γκ + 8GMγπ

GMγ

×2F1

[
− 3(−1 + γ)

2(1 + 3γ)
,
1
2
, 1− 3(−1 + γ)

2(1 + 3γ)
,
3A1+3γκ

8GMγπ

])}
, (34)

where2F1 is the hypergeometric function.
However, we can solve the integral in (33) for particular cases of theγ parameter, that is:

• radiation case:γ = 1
3

∫ √
384πGM1/3 − 144κA2dA =

A

2

√
384πGM1/3 − 144κA2

+
16iGπM1/3√

κ
ln

{
−24iA

√
κ + 2

√
384πGM1/3 − 144κA2

}
, (35)

• dust fluid:γ = 0
∫ √

384πGM0A− 144κA2dA =
(

A

2
− 2GπM0

3κ

)√
384πGM0A− 144κA2

−
16G2M2

0 π2
√

384πGM0A− 144κA2 ln
(
2
√

3κA + 2
√

3κA− 8GπM0

)

3
√

3κ3A
√

3κA− 8GπM0

, (36)

• inflation like case:γ = −1
∫ √

384πGM−1A4 − 144κA2dA =
1

2A

(
2A2

3
− κ

4GπM−1

)√
384πGM−1A4 − 144κA2, (37)

• stiff fluid: γ = 1
∫ √

384πGM1A−2 − 144κA2dA =
√

384πGM1A−2 − 144κA2

×
{

1
2A

+
iA
√

2πGM1√
3κA4 − 8πGM1

ln
(
−4i

√
2πGM1

A2
+

2
√

3κA4 − 8πGM1

A2

)}
. (38)

These results will be used in the next section, to obtain the solution according to the supersymmetric quantum mechanics
scheme.

4. Supersymmetric quantum solutions

In order to include the factor ordering problem, we substi-
tute the following relation into (31), that corresponds to what
Hartle and Hawking [9] called a semi-general factor ordering

A−1 d2Ψ
dA2

→ A−1+p d

dA
A−p dΨ

dA

= A−1

(
d2Ψ
dA2

− pA−1 dΨ
dA

)
, (39)

where the real parameterp measures the ambiguity in the fac-
tor ordering. So, the Wheeler-DeWitt equation can be written
as follows:

H0Ψ = −A
d2Ψ
dA2

+ p
dΨ
dA

− V (A)Ψ = 0, (40)

with V (A) = 384πGMγA−3γ+2 − 144κA3

In this scheme, we start giving the following super-
hamiltonian:

Hsuper :=
(
H0 + F

∂2Σ(A)
∂qν∂qµ

[
ψ̄, ψ

])
, (41)
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where the bosonic hamiltonianH0 corresponds to the one in
eq. (40), F is a complex function andΣ is the superpotential
function. We write the super-charges as follows:

Q = ψ

(
f(A)

d

dA
+ i

dΣ(A)
dA

)
, (42)

Q̄ = ψ̄

(
f(A)

d

dA
− i

dΣ(A)
dA

)
, (43)

wheref(A) is an auxiliary function to be determined via the
analogy with the hamiltonian under study.

We suppose the following algebra for the variables [2] ψ
andψ̄:

{
ψ, ψ̄

}
= −1, {ψ, ψ} = 0,

{
ψ̄, ψ̄

}
= 0. (44)

Using the representationψ = −d/dθ0 andψ̄ = θ0, one
finds the superspace hamiltonian to be written in the form

HsuperΨ =
{
Q, Q̄

}
Ψ =

(
QQ̄ + Q̄Q

)
Ψ

=

(
−f2(A)

d2

dA2
− f(A)

df

dA

d

dA
−

(
dΣ(A)

dA

)2

+ if(A)
d2Σ(A)

dA2

[
ψ̄, ψ

])
Ψ. (45)

This last equation is similar to (41).
Comparing Eqs. (40) and (45) we obtain the following

relations:

f2(A) = A, p = −1
2
, V (A) =

(
dΣ(A)

dA

)2

. (46)

We can see that the parameter that gives the measure of the
factor ordering is fixed atp = − 1

2 in this approach, leading
to

−f(A)
df

dA
≡ p. (47)

Then, any hamiltonian equation in one dimension that obeys
this relation, will have the factor ordering fixed in the su-
persymmetric regime. In other cases, it will be necessary to
study the particular hamiltonian equation and the supersym-
metric scheme.

Moreover, in this scheme, any physical state must obey
the following quantum constraints:

Q̄Ψ = 0, (48)

QΨ = 0. (49)

The wave function has the following decomposition in the
Grassmann variables representation

Ψ = u+ + u−θ0, (50)

where the componentu+ is the contribution of the bosonic
sector, and whereas ,u− is the contribution of the fermionic
sector.

The supercharges read as

Q = −
(√

A
d

dA
+ iDAΣ

)
d

dθ0
, (51)

Q̄ = θ0

(√
A

d

dA
− iDAΣ

)
, (52)

whereDA = d/dA.
Using Eq. (48), we get the following differential equa-

tion:

(√
A

du+

dA
− iDaΣu+

)
= 0. (53)

The solution of the latter equation is

u+ = u0+e
i
R 1√

A
DAΣ dA

, (54)

whereu0+ is an integration constant.
Employing Eq. (49) one gets

(√
A

du−
dA

+ iDaΣu−
)

= 0, (55)

whereu− has the form:

u− = u0−e
−i
R 1√

A
DAΣ dA

. (56)

Equations (54) and (56) can be written in the following way:

u± = u0±e
±i
R 1√

A
DAΣ dA

. (57)

The integration in these equations corresponds exactly to
equation (33). Thus, the supersymmetric quantum solutions
are obtained in closed form.

In the supersymmetric fashion, the calculation by means
of the Grassmann variables of|Ψ|2 given by (50) is well
known [10]:

(Ψ1|Ψ2) =

∫
(Ψ1(θ∗))∗Ψ2(θ∗)e

−
∑

i

θ∗i θi ∏

i

dθ∗i dθi, (58)

where the operation∗ is defined as:

(Cθ1 . . . θn)∗ = θ∗n . . . θ∗1C∗,
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with the usual algebra for the Grassman numbers
θiθj = −θjθi. The rules to integrate over these numbers are
the following:

∫
θ1θ

∗
1 ...θnθ∗ndθ∗ndθn...dθ∗1dθ1 = 1, (59)

∫
dθ∗i =

∫
dθi = 0. (60)

In our case, we haveΨ1 = Ψ2 = Ψ. So, when we inte-
grate to the Grassmann numbers, employing also the relations
(59) and (60), we obtain

|Ψ|2 = ū+ u+ + ū− u−, (61)

where thēu symbol means the complex operation.
Using the expresions for the functionsu+ andu− given

in (54) and (56), respectively, we arrive to the following ex-
pression for the probability density:

|Ψ|2 = u2
0+ + u2

0−. (62)

Thus, we are able to express Eq. (58) for our particular
problem. As can be seen, we can infer that the contributions

of the bosonic and fermionic sectors of the density probabil-
ity are equal.

5. Conclusions

The main results in this work are to provide the methodol-
ogy to find the general form for all contributions that ocurre
in the expansion of the FRW wave function of the Universe
with matter, within the approach of Witten’s supersymmet-
ric quantum mechanics. In addition, we find one criterion
for fixing the parameter that measure the factor ordering of
the operators. Besides, we find that the exact solutions for
the empty (+) and filled (-) sector of the fermion Fock space
are at the same time the lowest-order WKB approximations
(Einstein-Hamilton-Jacobi equation). Finally, we find the
general form of the probability density, Eq. (58), for the FRW
case, including matter fields.
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