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Fast algorithm for bilinear transforms in optics
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C.P. 72570, Puebla, Pue. Ḿexico
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The fast algorithm for calculating the bilinear transform in the optical system is proposed. This algorithm is based on the coherent-mode
representation of the cross-spectral density function of the illumination. The algorithm is computationally efficient when the illumination is
partially coherent. Numerical examples are studied and compared with theoretical results.
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Se propone un algoritmo rápido para calcular la transformación bilineal en un sistemáoptico. Este algoritmo está basado en la representación
en modos coherentes de la función de densidad espectral cruzada de la iluminación. El algoritmo es eficiente computacionalmente cuando la
iluminación es parcialmente coherente. Se estudian ejemplos numéricos y se comparan con resultados teóricos.

Descriptores:Transformacíon bilineal; algoritmo ŕapido; densidad espectral cruzada; representación en modos coherentes

PACS: 42.25.Kb; 42.30.Va; 42.30.Kq; 42.15.Eq.

1. Introduction

In consequence of the quadratic relation between the opti-
cal field and intensity, an inherent nonlinearity exists in al-
most all optical systems. As well known, the outputg (y)
of any non-linear system can be expressed as a functional of
the input signalf (x), which is represented by the Volterra
series [1]

g (y) = q0 (y) +
∞∑

n=1

∫
· · ·

∫
dx1 . . . dxnf (x1) . . .

×f (xn) qn (y; x1, . . . , xn) , (1)

whereqn (...) denotes thenth-order Volterra kernel of the
system. Saleh [2] showed that many optical systems and pro-
cesses can be represented either exactly or approximately by
the third term of this series,i.e.,

g (y) =
∫∫ ∞

−∞
f (x1) f∗ (x2) q2 (y; x1, x2) dx1dx2. (2)

He called the transform described by Eq. (2) a bilinear trans-
form (BLT) and gave a comprehensive analysis of the prop-
erties of its kernel for various optical systems.

In spite of all its mathematical attractiveness the BLT ap-
proach has so far limited application for numerical simula-
tion of optical systems in view of the complexity of the re-
quired calculations and, as a consequence, the enormous time

needed for its computer realization. In this connection there
is a strong need for a computationally efficient method for
calculating the BLT. Recently we proposed such a method
for calculating the BLT in partially coherent optical imaging
system [3]. This method is based on the coherent-mode rep-
resentation of the cross-spectral density function of the illu-
mination and allows to reduce the needed computational ef-
fort by a factor up to two orders in comparison with the direct
calculation. In this paper, we describe the generalization of
the proposed method for calculating the BLT in an arbitrary
optical system and illustrate its efficiency by two examples
of calculating the intensity distribution when optical system
meets either the condition of image formation or the condi-
tion of Fourier spectrum formation. After the analogy of the
FFT algorithm we refer to the proposed method as FBLT al-
gorithm.

2. BLT in optics and its computer realization

Let us consider an elementary optical system with a single
thin converging lens shown in Fig. 1. We will assume that
an object with the complex amplitude transmittancet (x)
in a point x =(x, y) is illuminated by a stochastic quasi-
monochromatic scalar wave fieldV (x) (to keep the notation
as simple as possible, here and further on, we suppress the
explicit dependence of some of considered quantities on tem-
poral frequencyν), which can be completely characterized
by the cross-spectral density function [4]
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W (x1,x2) = 〈V (x1) V ∗ (x2)〉 , (3)

where the angular brackets represent the statistical average
taken over the ensemble and the asterisk denotes the com-
plex conjugate. Then, as it is well known [see,e.g., Ref. 5],
the intensity distribution in the output plane of the system,
within the paraxial approximation, is given by

I (u) =
∫∫ ∞

−∞
t (x1) t∗ (x2) W (x1,x2)

×H (u;x1) H∗ (u;x2) dx1dx2, (4)

where

H (u;x) =
1

λ2z1z2
exp

(
i

π

λz1
x2

)
exp

(
i

π

λz2
u2

)

×
∫ ∞

−∞
P (p) exp

[
i
π

λ

(
1
z1

+
1
z2
− 1

f

)
p2

]

× exp
[
−i

2π

λz2
p·

(
u+

z2

z1
x
)]

dp, (5)

λ is the mean wavelength,f is the focal distance of the lens,
andP (p) is the aperture function of the lens. Comparing Eq.
(4) with Eq. (2), one can find that this equation describes the
BLT of the object functiont (x) with the Volterra kernel

q2 (u;x1,x2) = W (x1,x2)H (u;x1)H∗ (u;x2) . (6)

If the geometry in Fig. 1 satisfies the lens law,

1/z1 + 1/z2 = 1/f

(the image formation condition), the corresponding BLT ker-
nel of the system takes the same form as Eq. (6), but with

H (u;x) =
1

λ2z1z2
exp

(
i

π

λz1
x2

)
exp

(
i

π

λz2
u2

)

×
∫ ∞

−∞
P (p) exp

[
−i

2π

λz2
p·

(
u+

z2

z1
x
)]

dp, (7)

which is known as the amplitude spread function of optical
system.

If z2 = f (the Fourier transform condition), the corre-
sponding BLT kernel again has the form of Eq. (6) with

H (u;x) =
1

iλf
exp

[
i

π

λf

(
1− z1

f

)
x2

]

P

(
u+

z1

f
x
)

exp
(
−i

2π

λf
u · x

)
. (8)

FIGURE 1. Single lens optical system.

It is obvious that knowledge of the functionst (x),
W (x1,x2) andH (u;x) allows to calculate BLT (4) with the
kernel given by Eqs. (6-8). Let us evaluate the computational
complexity of such a calculation. The dominant portion of
calculating the intensity distribution from Eq. (4) is the mul-
tiplication of four 4-D functionst (x1) t∗ (x2), W (x1,x2),
H (u;x1) andH∗ (u;x2). To realize the numerical multipli-
cation of these functions, it is necessary to multiply their sam-
ples for all possible combinations of sampling points taken
one by one in each of three planesu, x1 andx2. Hence,
assuming that the illumination field, object and amplitude
spread function have each been adequately represented by
N × N sampling points, one finds that the total number of
operations required to computeI (u) is proportional to

C =
(
N2

)3
= N6. (9)

The magnitude of this number can easily result in an unac-
ceptably long computation time. Thus, for example, when
N = 100 and the computational speed is 106 operations per
second, the computer run time needed for calculation ofI (u)
is about 300 h. Clearly, an alternative approach to the calcu-
lation of intensity distribution is desired as a way to reduce
the computational effort.

3. FBLT algorithm

According to Wolf’s theory of partial coherence in the space-
frequency domain [4], the cross-spectral density function
W (x1,x2) of a wide class of sources may be represented
in the form of the Mercer expansion,i.e.,

W (x1,x2) =
∞∑

n=0

λnϕn (x1) ϕ∗n (x2) , (10)

whereλn are the eigenvalues andϕn (x) are the orthonormal
eigenfunctions of the homogeneous Fredholm integral equa-
tion

∫ ∞

−∞
W (x1,x2)ϕn (x2) dx2 = λnϕn (x1) . (11)

Rev. Mex. F́ıs. 48 (3) (2002) 186–191



188 A. S. OSTROVSKY, O. RAMOS ROMERO AND G. MARTÍNEZ NICONOFF

The expansion (11) represents the cross-spectral density
function of the illumination field as a superposition of spa-
tially coherent mutually uncorrelated elementary modes.

Substituting forW (x1,x2) from Eq. (10) into Eq. (4),
after a straightforward calculation we obtain

I (u) =
∞∑

n=0

In (u) , (12)

where

In (u) = λn

∣∣∣∣
∫ ∞

−∞
t (x)ϕn (x)H (u;x) dx

∣∣∣∣
2

(13)

represents the intensity distribution formed by then-th co-
herent mode of illumination field with the weightλn. The
eigenvaluesλn may be arranged in a converging sequence

λ0 ≥ λ1 ≥ ... ≥ λn ≥ ... ≥ 0, (14)

and hence, it is possible to truncate the summation in Eq. (12)
to a finite numberM of expansion terms which ensures the
admissible value of the relative error of approximation,

4 =
∞∑

n=M

∫ ∞

−∞
In (u) du/

∫ ∞

−∞
I (u) du. (15)

It is evident that this error decreases with increase of the num-
berM . In Ref. 6 the concept of the effective numberN of
uncorrelated modes needed to represent the illumination field
is introduced, and its upper bound is defined by the following
inequality:

N≤
[∫ ∞

−∞
W (x,x) dx

]2

/

∫∫ ∞

−∞
|W (x1,x2)|2 dx1dx2. (16)

It is also noted there that this number may be used to establish
an optimal point for truncating the orthogonal representation
of the intensity distribution. As it follows from our exam-
ples given in the next section, when the upper bound of the
effective numberN of uncorrelated modes of the illumination
field is used to truncate the summation in Eq. (12), the rel-
ative error of intensity approximation does not exceed a few
percent. Such an error is quite admissible when resolving
many practical problems of actual optical design.

Now, let us evaluate the computational complexity of in-
tensity calculation in accordance with the proposed method.
The dominant portion of the intensity calculation from Eqs.
(12) and (13) is the consecutive multiplication of 4-D func-
tion H (u;x) by 2-D function(λn)1/2

t (x)ϕn (x), followed
by the calculation of a square absolute value of the product
for everyn-th expansion term. To realize the numerical cal-
culation of every expansion term in Eq. (12), it is necessary
to multiply the samples of this functions for all possible com-
binations of sampling points taken one by one in each of the

planesu andx, and then to multiply the obtained product
by its conjugate value. Hence, again usingN ×N sampling
points and truncating the summation in Eq. (12) to the ef-
fective numberN of uncorrelated modes, one finds that the
number of operations needed to computeI (u) by the pro-
posed algorithm is proportional to

C = N
[(

N2
)2

+ N2
]

= NN2
(
N2 + 1

)
(17)

or, for rather largeN ,
C ≈ NN4. (18)

As shown in Ref. 7, the value ofN increases with de-
crease in the degree of coherence of the illumination field.
For a completely coherent illumination,N = 1, and the com-
putational effortC decreases toN4. For a partially coherent
illumination, C increases linearly withN, i.e., the computa-
tional effort is lager the more incoherent the illumination. For
sufficiently large values ofN, the illumination may be gener-
ally considered to be completely incoherent. In this case, Eq.
(4) reduces to [5]:

I (u) = I0

∫∫ ∞

−∞
|H (u;x)|2 |t (x)|2 dx, (19)

whereI0 is a constant. By analogy with the foregoing, it is
straightforward matter to show that this time the number of
operations needed to computeI (u) reduces again toN4.

Comparison of the computational efficiency of the direct
calculation and the proposed algorithm for different values
of N is illustrated by a schematic picture in Fig 2. It is ev-
ident from this figure that the FBLT algorithm can be effi-
ciently employed to calculate the intensity distribution when
N ≤ N. For the same values ofN and the computational
speed that are in the example of the previous section, the
computer run time needed for calculation ofI (u) from Eqs.
(12) and (13) takes from 2 min to 3 h, depending on the de-
gree of coherence of the illumination.

FIGURE 2. Estimation of the computational effortC as a function
of coherence (effective numberN of uncorrelated modes of illumi-
nation): 1 - the direct method in accordance with Eq. (4); 2 - the
FBLT algorithm; 3 - the direct method in accordance with Eq. (19).
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4. Examples of FBLT calculations

To illustrate the application of the proposed algorithm, let us
consider two examples of calculating the intensity distribu-
tion (4) in the output plane of the optical system shown in
Fig. 1 for two specific cases,i.e., formation of the image of
an object and formation of the Fourier spectrum of an object.

As an object we choose the 1-D Dirac comb function,i.e.,

t (x) =
∑

k

δ (x− kx0) . (20)

This object was studied for the following two reasons. First,
both the ideal image and the exact Fourier spectrum of such
an object have the same form of the Dirac comb function.
Secondly, the choice of this object allows the result of inte-
grating in Eq. (4) to be obtained in an explicit analytic form,
a fact that gives us a chance to evaluate the accuracy of the
proposed algorithm.

Taking into account the 1-D character of our object, and
for the sake of simplicity, as an illumination field, we con-
sider the secondary 1-D Gaussian Schell-model source [7]
that is characterized by a cross-spectral density function of
the form

W(x1, x2)=I0 exp
(
−x2

1 + x2
2

4σ2
I

)
exp

[
− (x1−x2)

2

2σ2
µ

]
, (21)

whereI0, σ2
I and σ2

µ are positive constants. This type of
source was chosen because it exhibits the essential features
of many sources encountered in practice and yet it can be
analyzed mathematically with relative easy. For this source

λn = I0

(
π

a + b + c

)1/2 (
b

a + b + c

)n

, (22)

and

ϕn (x)=
(

2c

π

)1/4 1

(2nn!)1/2
Hn

(
x
√

2c
)

exp
(−cx2

)
, (23)

where

a = 1/4σ2
I , b = 1/2σ2

µ, c =
(
a2 + 2ab

)1/2
, (24)

andHn (...) is the Hermite polynomial of ordern. As shown
in Ref. 6, for this source the effective number of uncorrelated
modes is determined by the inequality

N ≤ (
1 + 4/β2

)1/2
, (25)

whereβ = σµ/σI is a measure of the global coherence of the
source.

At last, we consider that the lens in Fig. 1 is free of aber-
rations and has a circular aperture of radiusR. The amplitude
spread function of such an optical system under certain con-
ditions [5] is given by

H (ρ) = α exp
(

i
π

λz2
ρ2

)
J1 (πRρ/λf)

πRρ/λf
, (26)

whereρ =
(
u2 + v2

)1/2
, J1 (...) is the first-order Bessel

function, andα, here and further on, is a dimensionless coef-
ficient.

At first we suppose that the optical system forms the im-
age of an object without magnification (z1 = z2 = 2f ).
Then, substituting fort (x), W (x1, x2) andH (u; x) from
Eqs. (20), (21) and (26) into the 1-D version of Eq. (4) and
making use of the sifting property of the Dirac function, it is
straightforward matter to obtain the following expression for
the theoretical image intensity distribution:

I (u) = αI0

∑

m,l

Aml
J1 [πR (u + mx0) /λf ]

πR (u + mx0) /λf

×J1 [πR (u + lx0) /λf ]
πR (u + lx0) /λf

, (27)

where

Aml=exp
[
− x2

0

4σ2
I

(
m2 + l2

)]
exp

[
− x2

0

2σ2
µ

(m− l)2
]

. (28)

By analogy, but this time using the FBLT algorithm with
due regard for the truncation of summation in Eq.(12), we ob-
tain the following approximation of the image intensity dis-
tribution (27):

∧
I (u)=αI0

M−1∑
n=0

Bn

[∑

k

Cnk
J1 [πR (u+kx0) /λf ]

πR (u+kx0) /λf

]2

, (29)

where

Bn =
1

2nn!

(
b

a + b + c

)n

, (30)

and

Cnk = Hn

(
kx0

√
2c

)
exp

(−ck2x2
0

)
. (31)

Now we suppose that the optical system realizes the
Fourier transform of an object (z1 = z2 = f). For the sake of
simplicity we neglect the vignetting effect,i.e., the limitation
of the effective object size by the finite lens aperture. In this
case, making use of Eqs. (8), (20) and (21), by analogy with
the foregoing, one can find that the intensity distribution (4)
takes the form

Rev. Mex. F́ıs. 48 (3) (2002) 186–191



190 A. S. OSTROVSKY, O. RAMOS ROMERO AND G. MARTÍNEZ NICONOFF

I (u)=αI0


A0+2

∑

m 6=l

Aml cos
[

2π

λf
ux0 (m−l)

]
 , (32)

where

A0 =
∑

k

exp
(
− x2

0

2σ2
I

k2

)
, (33)

andAml are the same as in Eq. (28).

Using the FBLT algorithm, we obtain the following ap-
proximation of the intensity distribution (32):

∧
I

(
u
)

= αI0

M−1∑
n=0

Bn

[
Cn0 + 2

∑

m 6=l

Cnml

× cos
[ 2π

λf
ux0

(
m− l

)]]
, (34)

where

Cn0 =
∑

k

H2
n

(
kx0

√
2c

)
exp

(−2x2
0ck

2
)
, (35)

Cnml = Hn

(
mx0

√
2c

)
Hn

(
lx0

√
2c

)

× exp
[−cx2

0

(
m2 + l2

)]
, (36)

andBn is the same as in Eq. (30).

To evaluate the quality of our approximation, we realized
numerical calculations of the intensity distributionI (u) in
accordance with Eqs. (27), (29), (32) and (33). When calcu-
lating we putx0 = 2.44λf/R, which is twice greater than
the Rayleigh limit of resolution for our optical system, and
σI = 2σµ = 10x0, which corresponds to the case of the
true partial coherence(β = 0.5). We truncated the summa-
tion over indexesk, m, l to nine central Dirac impulses in the
object and varied the numberM of the terms in the modal
expansion.

The results of calculations are shown in Fig. 3 and Fig. 4.
As can be seen in these figures, with the increase of the num-
berM the approximate intensity distributions come closer to
the theoretical curves. When the numberM is equal to the
effective numberN of uncorrelated modes of illumination (in
our exampleN = 4), the relative error of the FBLT algorithm
makes up approximately 1% and, whenM = 2N, it becomes
negligible.

FIGURE 3. Results of calculating the image intensity distribution in accordance with Eq. (29) for: (a)M = 1; (b) M = 4. Theoretical
intensity distribution, obtained according to Eq. (27), is shown by solid curves.
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FIGURE 4. Results of calculating the intensity distribution of Fourier spectrum in accordance with Eq. (34) for: (a)M = 1; (b) M = 4.
Theoretical intensity distribution, obtained according to Eq. (32), is shown by solid curves.

5. Concluding remarks

The FBLT algorithm allows to reduce considerably the com-
putational effort needed for calculating the intensity distri-
bution at the output of partially coherent optical system and
its efficiency is larger the more coherent the illumination in
a global sense. It must be noted that the application of this
algorithm requires the knowledge of the coherent-mode rep-
resentation of illuminating field (eigenvaluesλn and eigen-
functions ϕn). Unfortunately, the analytical expression of
the coherent modes is known for a small number of cases
such as Gaussian Schell-model sources [7], twisted Gaussian
Schell-model sources [8] and Bessel-correlated Schell-model
sources [9]. In general case, the evaluation of coherent modes
entails the numerical solution of the integral equation (11)

that is not an easier computational task than the proper calcu-
lation of BLT. However, it should be taken into account that
onceϕn andλn have been calculated for the given illumi-
nation, they can be stored and applied to the calculation of
BLT for any object and any optical system. Thus, the FBLT
algorithm can be considered as an indispensable tool for the
analysis and computer simulating of optical systems with par-
tially coherent illumination. We hope to report on other pos-
sible applications of the FBLT algorithm in the nearest future.
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