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RESUMEN

Se analisa la estructura de la matriz que surge en el an4lisis de la estabilidad lineal (de modos normales) de fiujos
sonales no divergentes sobre una esfera. El an4lisis est4 basado en el uso de una férmula de recurrencia, derivada
para los coeficientes de la interaccién no lineal de triadas. En calidad de una aplicacién, se demuestra que un flujo
de la forma de un polinomio de Legendre de grado j es estable, tanto exponencialmente como algebraicamente,
respecto a todas las perturbaciones de escalas pequefias cuyos nimeros zonales superan j.

ABSTRACT

A structure of the matrix resulting from the normal mode stability of zonal non-divergent flows on a sphere is
analysed. The analysis is based on using the recurrent formula derived for the nonlinear triad interaction coefficients.
As an application, it is shown that a sonal flow of the form of a Legendre polynomial of degree 5 is exponentially
and algebraically stable to all the small-scale perturbations whose sonal wave number is greater than j.

1. Introduction

Zonal incompressible two-dimensional flows have been analyzed in many papers devoted to the
stability problem of atmospheric circulation (Kuo, 1949; Baines, 1976; Dikiy, 1976; Tung, 1981;
Zeng et al., 1986a, b; Skiba, 1992, 1993). The choice of such idealized flows simplifies the stability
study and provides useful insight into the mechanism of the growth of initial perturbations.
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The vorticity equation (VE) governing such motions is of particular hydrodynamical and
meteorological interest (Silberman, 1954; Adem, 1956; Adem and Lezama, 1960; Ellsaesser,
1966). Notice that analytical methods of the stability study can be used only if the fluid domain
and basic flow are simple in structure. In more complicated cases, numerical methods are
necessary. Errors of the discretization of the original differential vorticity equation as well
as other types of numerical errors which always accompany any numerical analysis pose major
problems. One of them is the credibility of the numerical results obtained. Indeed, if we consider
an ideal unforced fluid then the vorticity equation possesses an infinite number of invariants of
motions, while the discrete vorticity equation breaks almost all of these invariants. Since these
invariants represent certain restrictions on the behavior of VE solutions and their perturbations,
it is clear that numerical and analytical stability results can diverge considerably. Therefore it is
always of great importance to analyze the convergence of the numerical stability results (Skiba,
1998). Nevertheless, in this work, we get some exact linear stability results using a numerical
approach.

As it is well-known, the normal mode (linear) stability study of a flow is reduced to the
solution of a spectral probem for the VE operator linearized about such a flow. Our research is
devoted to the analysis of the structure of the stability matrix representing this operator in finite-
dimensional subspaces of perturbations on a sphere. A recurrent formula for the nonlinear triad
interaction coefficients is derived in Section 2 for the case that one of the spherical harmonics is

zonal. The normal mode stability matrix for a basic flow on a sphere is obtained in Section 3,
while Section 4 treats a symmetric matrix K (-m). In Section 5, the structure of the normal mode

stability matrix is studied in detail in the case that the basic flow has the form of a Legendre
polynomial. The results are used in Section 6 to determine exponentially and algebraically stable
perturbations of the Legendre polynomial flows (Propositions I and II).

2. Recurrent formula for K.,

Let a = (m, n), and Qa(u) be a normalized associated Legendre function of degree n and zonal
number m. We now derive a recurrent formula (with respect to j) for the tensor

1
Kjay = —3m1 [ Qa(1)@1(4)dQ; (1) 1)
-1

which is the nonlinear triad interaction coefficient Kg,., (see, for example, Boer, 1983) in the

case when the first spectral number 8 is zonal: 8 = (0, j). We will need this formula later to
analyze the matrix structure in the normal mode stability study of the Legendre polynomials.
We define by

ka + 1y = (kma + Ilm~y, kng +iny) (2)

the linear operation for spherical wave numbers a = (maqa, nq) and v = (my, ny) and integers
k and l. Let € = (0, 1). We now substitute j + 1 instead of 5 in (1) and use twice the recurrent
formula

2 __2)1/2
DR (1) = uQu-1(p) — Dp-1Qn—2(n), Dr' = {Z,ﬂ = 1 } (%)
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(Machenauer, 1977), first for the normalized Legendre polynomial Q,;, and then for pQ~. As
a result, we obtain

1
Kj+1a o, 7= Dj+1 (Qjaq + D'7+EK., a, 7+
+D1Kj o, 4-¢ = DiKj-1, a, ) (4)
where D; = Dg, and
. 1
Bjay = —3m1 [ QjQuQydn (5)
-1
Since
d (Djy1 D;
Q= a (j+ T i+~ TQJ'—I) (6)
formulae (1) and (6) give
D; D;
— 3+l g J 5.
Djay = mKJH, @7~ TKJ-I, a, v (7)

Substituting (7) in (4) leads to a recurrent formula for K.

J+1
K; = )
P PR ij+1 (D’7+€K ) @ TtE
1 +1
+D’7K.i a, Y—€ - J j DJKJ_lv Q, '7) (8)

Since Qo (1) = const and Q;(u) = v3u, (1) gives

Koaq =0. (9)

Koy = _\/§m'7601’7 (10)

where Say = 6m,, m,6nq, n, is the product of the Kronecker deltas. Then for j > 2, coefficients
Ko~ are given by (8). For example:

K2a'7 = _3\/gm'1(D'y+e5a,'y+e + D’yaa,q—c) (11)

and
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157
2

Kaan = =22 may{ DaDascbiasrize

1
+Da+€D’76a,'7—2e + (D?1+e + D'21 - g) 60,'1} . (12)

Note that K3, and K34, were obtained in Boer (1983) by direct calculations. It follows from
(1) and (5) that for each fixed j, both K;,, and ®, 4y are symmetric with respect to a and 7.

8. The stability matrix

Let J)(z\, u) be a basic solution of the vorticity equation for a viscous incompressible fluid
subjected on the unit sphere S to a forcing and dissipation. Then the evolution of an infinitesimal

perturbation (¢, A, u) of ¥(X, p) is governed by

d
as=Ls¢ (13)
where
L¢=J(0,A7%) - J($,¢) - [0+ vA¥S) (14)

is the linear operator (Skiba, 1994a, b), ¢ = A4 is the perturbation vorticity,
Q1) =, 1) + 24, ¢ n) = AP, p) (15)

o is the linear drag coefficient, v is the diffusion coefficient, and the operator AS is defined for
any real S > 0 and any function

v u) = va¥Ya= Y. D YRV (\p)

a(1) n=1m=-—n
as
M= Yo=Y x5 S o2V 00 (16)
af1) n=1 m==n

where a = (m,n), Ya(A,u) = Ypo*(), p) is the spherical harmonic, o = ¢ is the Fourier
coefficient, and

Xa=xn=n(n+1) (17)

We use here the notations by Baer and Platzman (1961) and Platzman (1962). The operator

A is interpreted as the square root of the positive Laplace operator on a sphere: A2=—A (Skiba,
1989, 1994b, 1997).
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Assume that the basic solution qz and perturbation 1 belong to subspaces PM and PV of
spherical polynomials of degrees M and N, respectively:

¥=2_ ¥s¥p, =3 Y (18)
B(1) B(1)
1 N N
v=AT¢=-)" Xa'saYa, = ¢aYa (19)

a(1) a(1)
We now consider the restriction of the operator L to subspace PV . Substituting (18) and (19)

in (13), and taking the inner product of the equation obtained with a hamonic Ya(na < N),
lead to

N
d —
Efa =< Lg’,Ya >= /(Lg)YadS = Z Laq %] (20)
S 7(1)
where
Loy =< LYy, Yo > (21)

are the (a, 7)-element of the matrix L representing the operator (14) in the subspace PN (Skiba,
1989). Thus in PV, problem (13) is reduced to

d_ -

-—=¢ = 22

s = LS (22)
where vector ¢ of PV has components ¢f*(n = 1,2, ... yN;| m|< n).

Substituting (14) in (21) gives

Lay =< J(0,A71Y,),Ya >

- < J(lZ,Yﬁ,), Ya > - < (0’+VA25)Y'7, Ya >

= - <J(@+x7'0,Yy), Ya > —(0+vx3)bay (23)
Due to (18) and (15),
= 1X 1 M 1 -1
b+xy Q=2ux7 + 3 (X7 — x5 )SY5 (24)
B(1)

Taking into account that
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a .
< J([l,Y-y),Ya >=-< ‘é"A—Y'y, Yo >= —imybaqy (25)
we obtain
M
Loy = )_ BpanSp + Dary (26)
B(1)
where
Bgay = (XEI - X;l) <J (Yﬂ’Y’Y) Yo > (27)

is symmetric over 8 and <, the scalar product

o if mg +my # mqa

4rKgyy if mg+my=mq (28)

< J(Yp,Yq),Yo >= {
characterizes the resonance interaction of the three spherical harmonics (Silberman, 1954), and

S . -1
Da,7 = {—(a’ + VX.’) + 12m',x,, } 6a'7 (29)
is the complex element of a diagonal matrix D. Note that for S = 2, this matrix was first given
by Simmons et al. (1983). By (29), the linear drag, viscosity and Earth’s rotation contribute

only in the diagonal elements Daq of matrix L, besides, the real and imaginary parts of Daqo
represent the dissipation and Earth’s rotation, respectively.

Also note that the use of orthonormal basis of the spherical harmonics leads to the complex-
ification of the real space of solutions on a sphere. Therefore the elements Lay of matric L
obey

Ly 5= (-1)™+t™T,, (30)

Indeed,

Lz 5 =< LY§,Yg >= (-1)™™ < LY,,Y, >
= (-1)™et™ < IV, Ya >= (-1)met™ T, (31)

4. Matrix KJ(."')

For integers j and m(1 < j < M, 1 <| m |< N), we introduce a symmetric matrix K;-m) with
the entries

1
au=-7 [ QLW ®dQ;(k) (32
-1
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where QY (u) is the normalized associated Legendre function, Q 7(#) = Q}(u), and indices k and

| are changed from | m | to N. The elements of the matrix Kg-m) are obviously the nonlinear
triad interaction coefficients (1) under the conditions that mq = my = m.
Note that

(-m) _ _g(m)
K, ™ =K (33)

Due to the recurrent formula (8) and the selection rules (Silberman, 1954), it is easily obtained
that for any j and m(1 < j < M, 1 <| m |< N), matrix Kg-m) is a real symmetric banded matrix
(i.e.,agy =0if p < k—1 and I — k > q for some non-negative integers p,q). For even j, the band
width of K{™ is 2 — 1, besides, inside the band, ag; = 0 if k1 is even, i.e., the diagonals with

zero and nonzero elements alternate (Fig. la). For odd j, the matrix Kg.m) is block-diagonal
(Fig. 1b):
K™ = z{™ g r{™ (34)

where Z](.m) and R(-m) are symmetric banded matrices whose band width is equal to 5. The
elements of ZJ(-m) (or R}-m)) are the entries (32) with odd (even) numbers k and I. Both ZJ(-m)

and Rgm) have no zero diagonals inside their bands (Fig. 1c).

a) b)
T z™i o
“a . 6. j
4. "6,
4 6 | 0 R (m)
a_ " 6\ J
) . A 6 n,
., 6 " - - -
’ . c) ‘1 "3, 5,
“3.3. 05

Fig. 1. The structure of the matrix Kg.m)
a. The banded structure of the matrix Kg.m) for y = 2, 4, 6 and a fixed m. Nonzero diagonals of the matrices
Kgm), Kgm) and Kg’") are marked by the numbers 2, 4 and 6, respectively.
b. Block diagonal structure of the matrix K;m) =2 ’(.m) @ R}m) for odd j.

c. The banded structure of the matrix ZJ(.m) for j =1, 3, 5 and a fixed m. Nonzero diagonals of the matrices

me), ng) and Zém) are marked by the numbers 1, 3 and 5, respectively. The matrices RJ(.'") have the same
structure.
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Let 2 <| m [< N. Then any matrix Kg.m) with even j as well as any of the matrices

ZJ(-m), Rj(-m) and Rg-l) with odd j are irreducible. It follows from the fact that their elements
aj k-1 and ag i, are nonzero for any k according to the selection rules, and hence the directed

graph of any of these matrices is strongly connected (Lancaster, 1969). For | m |= 1, the matrices

Kg‘) and Zg)_l are reducible according to one of the selection rules (Fig. 2a, b). However if
the stability analysis is restricted by considering only such perturbations ¢ of the set I; that are

orthogonal to the spherical harmonic Yll (A, p) then matrices th) and Zg;)—l become irreducible.
The truth of such a restriction follows from the fact that the Fourier coefficients ¢ (t) and ¢} (t) of
the vorticity perturbation ¢(t) are time invariant. Indeed, ¢{(t) = const due to the conservation

of the angular momentum, while gll (t) = const due to the conservation of both ¢{ and the part of
the solution kinetic energy concentrated in the subspace of homogeneous spherical polynomials
of the degree one (Skiba, 1989).

a) — 6 - b) 5 9 Y c) 4 8 Y

T 4+ Jd Y 1+ 4 ['—('— A4 l_(—

'—)- '—')‘

sl 5 |- a | 7 | ¥ 3| 6 | ¥

1 S 41 4 d Al !.__(__ A V—L(_

[—+ l——)—

4 3 5 Y 2 4 Y

1t T T v Y v T~ ¥ |_(_ T v |_(_

] ]

| 3 | 2 3 | ¥ 1 2 | ¥

A A J 4 I_(— Lf—
— 2 - 1 1

1

Fig. 2. Directed graph of the matrix Kal) for N = 6 (a), and matrices Zgl) (b) and Rgl) (c) for N =09.

Thus a further decomposition of any of the matrices KS-m) into diagonal blocks is impossible.

In particular, Kg.o) is zero for any j > 1. Also for each non-zero m(1 < m < N), Kgm) is the
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scalar matrix with the elements —v/3m on the principal diagonal, and any of Kgm), Z:gm) and

Rgm) is three-diagonal Jacobi matrix, since aj 151 % is positive for any k (Voevodin and
Kuznetzov, 1984).

5. Stability matrix of a Legendre-polynomial flow

Since a zonal flow can be represented as Fourier’s series of the Legendre polynomials, it is of
special interest to analyze the stability of the flow which has the form of a Legendre polynomial:

¥(u) = $Ps () = $P;(n)

§(p) = aPj(p) (35)

where 8 = (0, j5), 5 > 2, and ¥ and a = —xjtz = —j(j + 1)¢ are the amplitudes. Then there is
no summation in (26), and the elements of the matrix L are

Lay = §Bgay + Doy = a(xj ' — x7') < J(P;,Y4),Ya > +Dan (36)

Due to (35) and selection rules, Bggy = 0 if my # mq, or my = 0. Taking account of (29) we
obtain that L is a block diagonal matrix:

N
L= @ ™, ™= _pm (37)
m=—N

where i is the imaginary unit, and
y(m) — aK§m)C(m) + 7(m) (38)

Each L(™ is a restriction of L to the subspace Iﬁ =ImN Pf,v where Iy, is the span of the
spherical harmonics Y, (A, u) with n >| m |. In (38), KJ(-m) is the symmetric matrix (32), and

clm) — diag{c;}, (™) = diag{T}}, p(m™ = diag{d;} (39)

are diagonal matrices of the same order as K}m), besides, according to (29) and (36) their
elements are

-1 -1 -1
ck=47(x; —xx ) Tp=2mxy, dx= o +vxi

(k=|m|,|m|+1,...,N) (40)

where xj is given by (17). For odd j, each matrix L("‘)(l <| m |< N) is block diagonal due to
(34):
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L™ =™ g Lg") = i{a[ZJ(-m) @ Rf.'")]c("‘) +1™} + p(™) (41)

In other words, Ls,m) and Lgn) are the restrictions of matrix L to the subspaces Ol,x =

OmNPY and Eﬁ =EnnPV , respectively, where Oy, is the span of all Y;;" (A, u) of I, whose
degree n is odd, and Ep = Iy © On is the orthogonal complement of Om to Im.

6. Stable invariant manifolds of a Legendre-polynomial flow

We now find stable invariant sets of infinitesimal perturbations of the Legendre polynomial flow
(35) using the structure (37) and (38) of the stability matrix (for more comprehensive results
see Skiba and Adem, 1998).

Proposition 1. Let o,v > 0 in (40), and j be a degree of the Legendre polynomial flow (35). If

m =0 or | m |> j then for each truncation number N of series (19), the subspace Iﬁ =1Im npN
of dimension r = N— | m | +1 belongs to the stable manifold of the flow (35).

Proof. 1. Let first m=0. Then V(®) = 0 and L) = —D(o), and hence for each j, the set

I¥N = 1, " P belongs to the stable manifold of the basic flow (35). The decay rate of each
zonally symmetric perturbation is determined by the corresponding ;(}iagona.l element of the

matrix D). In an inviscid fluid (D(o) = 0), the set I;’,v belongs to the kernel of matrix L.

2. Let | m |> j. For the sake of simplicity we will omit the fixed indices m and j, i.e., denote

the matrices V(m), K J(.m), clm), T(™) and D(™) in the subspace IX by the symbols V, K, C, T
and D, respectively. Then matrices C and R = CD are positive definite, and

X =CV =aCKC +CT (42)

is a real symmetric matrix. In each subspace Iﬁ , the problem (22) has the form

Le=LiMe= v - D) (43)
or
d <o -
5 (C6) =1XS— B¢ (44)
Consider the equation
d — % _ —~ % — %
¢ C=—-i{"X-¢"R (45)

adjoint to (44). Multiplying (44) to the left by vector {'*, and (45) to the right by vector ¢, and
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summing the results give

d s

E(g

Cd)=-2"R{'<0 (46)

In the case of an ideal fluid, the product {*C¢ is conserved. It follows from here that the
Legendre polynomial flow (35) is stable to infinitesimal perturbations ¢ of the subspace IN in
the norm (Liapunov function) || {'[lc= (& *Cf’)l/ 2, The assertion is proved.

It follows from Proposition I that for an ideal fluid (0 = 0, v = 0), infinitesimal perturbations

of (35) of N (| m |> 7) can not grow not only exponentially but also algebraically. The last fact
follows immidiately from the next assertion.

Proposition II. Let 0 = v = 0 and let N and j be natural. Then for each zonal number m
salisfying | m |> j, the matriz L™ has the ssmple structure.

Proof. Indeed, in this case each (r X r)-matrix L{™) is defined as L = iV — o E where index m
is omitted and r = N— | m | +1. Therefore it is sufficient to show that the eigenvalues of the
spectral problem

Vgn =wnpn (47)

are linearly independent. Consider first the case | m |> j. Then the matrix C = c(m) i positive,
and (47) is equivalent to the spectral problem

XPn — wnC@n (48)

with a symmetric matrix (42). Therefore, by theorem (15.3.4) from Parlett (1980), spectral
problem (48), and hence (47), has in the interval [— || V ||,|| V ||] exactly r real eigenvalues
wy ...,wr whose eigenvectors ¢, ..., Pr are C-orthogonal,

FLCPn = bin (49)

and hence, linearly independent. Here || V || is the spectral norm of matrix (38). The assertion
is proved.

7. Final conclusion

A recurrent formula is derived for the nonlinear triad interaction coefficients in the case when
one of the wave numbers is zonal. Using this formula, a structure of the matrix resulting from
the normal model stability of zonal non-divergent flows on a sphere is analyzed. A knowledge of
the matrix structure is used to show that in an incompressible fluid on a sphere (both viscous
and ideal), a zonal flow of the form of a Legendre polynomial of degree j is exponentially and
algebraically stable to all- the small-scale perturbations whose zonal wave number m is larger
than j (Propositions I and II).
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