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RESUMEN

Se reconsidera el estado zonal de la atmésferasando coeficientes de interaccién para simular la accién reciproca entre
las ondas atmosféricas y el estado zonalmente promediado. Con el fin de corregir el viento del este demasiado grande
en un modelo previo, los coeficientes de interaccién se especifican en funcién de la latitud. El procedimiento revisado
se aplica a un modelo acuoso poco profundo en el que la agregacién de fluidos es aniloga al calentamiento de la
atmésfera. Con un forzamiento simétrico el geopotencial y la velocidad horizontal zonalmente promediada deberfan
ser también campos simétricos, mientras que la funcién de corriente y la vorticidad deberian ser antisimétricas.
Los cdlculos previos a los vientos zonalmente promediados fueron demasiado fuertes en la regién cercana al ecuador
aunque la direccién se determiné correctamente. Los cdlculos presentados dan un resultado mejorado respecto a
los vientos tropicales del este.

En las integraciones se ha supuesto que el transporte meridional de vorticidad puede ser descrito por coeficientes
de interaccién. Esta suposicién hace posible determinar de una manera indirecta el transporte meridional del
momentum.

ABSTRACT

The zonal state of the atmosphere is reconsidered using interaction coefficients to simulate the interplay between
the atmospheric waves and the zonally averaged state. In order to correct too large easterly wind in an earlier model
the interaction coefficients are specified as functions of latitude. The revised procedure is applied to a shallow water
model in which addition of fluid is an analogue to the heating of the atmosphere. With a symmetric forcing the
geopotential and the zonally averaged horizontal velocity should also be symmetric fields, while the streamfunction
and the vorticity should be anti-symmetric. In the earlier calculations the zonally averaged winds were of too strong
in the region close to the equator although the direction was determined in a correct way. The present calculations
give an improved result with respect to the tropical easterlies.

In the integrations it has been assumed that the meridional transport of vorticity may be described by interaction
coefficients. This assumption makes it possible to determine in an indirect way the meridional momentum transport.
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1. Introduction

In an earlier paper (Wiin-Nielsen, 1994), hereafter referred to as Part I, a simple theory for the
zonally-averaged state of the atmosphere was presented. While the theory gave qualitatively
correct results and was able to account for both the increase of the zonal winds with height and
the latitudinal distribution of easterlies and westerlies it produced in general too large easterly
winds in the low latitudes. The present paper will show results from an improved formulation
of the integrations, but this time we shall for simplicity use a model based on a incompressible
and homogeneous fluid with a free surface.

The reader is referred to Part I for a general discussion of the historical aspects of the various
theories that has been developed in the past and to a description of the parameterization of the
interactions between the atmospheric waves and the zonally averaged state of the atmosphere.
Part I contains also references to papers by authors who have given important contributions to
the understanding of the shape and intensity of the zonally averaged state of the atmosphere.
These references will not be repeated in the present paper.

Fully developed global models of the general circulation are able to account for the zonal
structure of the atmosphere, and these models should of course be used if the desire is to account
for all the details. It has been realized for a long time that the meridional transport of sensible
and latent heat as well as the meridional transport of momentum by the atmospheric waves are
essential for the zonal structure of the atmosphere. This study, as well as the investigation in
Part I, attempts to parameterize these transports in such a way that they become expressible
in zonally averaged quantities. The main principle is that the transports of quasi-conservative
quantities may be expressed in terms of interaction coefficients.

Quasi-geostrophic or quasi-nondivergent models contain some problems with respect the ge-
neral structure of the zonally-averaged state. The model in the original formulation was quasi-
geostrophic as formulated by Charney (1948, 1949). Its application in short-range numerical
weather prediction, using a formulation without forcing and dissipation, gave some difficulties
due to the meridional variation of the Coriolis parameter. These difficulties were removed by
the use of the so-called balance equation (Charney, 1955) giving the nonlinear relation between
the geopotential and the streamfunction in a nondivergent flow. The model became then a
quasi-nondivergent model.

When heating and dissipation are introduced in the model some difficulties arise if the model
is used in the global, spherical domain. As an example one may consider a model with a
heating that is symmetric around the equator. In that case the same symmetry will exist for the
geopotential, the temperature, the zonally-averaged windfield and the vertical velocity, while the
streamfunction and the vorticity will be asymmetric. However, the normal formulation of the
potential vorticity equations uses the streamfunction (and the vorticities) which are asymmetric
and the symmetric heating in undifferentiated form. If we use the equations in this form we will
thus obtain symmetric fields of the streamfunction and thus asymmetry for those variables that
should be symmetric.

One may circumvent these difficulties in several ways. One of them is to formulate the vorticity
equations replacing the streamfunction by the geopotential in which case one has to assume that
the Coriolis parameter is constant in the formula for the vorticity. The streamfunction is then
obtained from a full or a simplified form of the balance equation. This procedure was used
in Part I. Another possibility is to maintain the variable Coriolis parameter and multiply each
term by it in which case the heating term will be multiplied by sine of the latitude and thus be
converted from a symmetric to an anti-symmetric term. This procedure has been tried, but the
results have so far been unsatisfactory.
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The models used in Part I were based on the two level, quasi-nondivergent model with specified
heating. In the investigation to be described in this note we shall simplify the model even
further by applying a shallow water model in which the zonal forcing is simulated by adding and
subtracting fluid from the model in such a way that the net-addition vanishes. The averaged
depth of the fluid is thus kept constant. Such a model (Wiin-Nielsen, 1998) has recently been
used to investigate atmospheric variations in the zonal direction. In the present investigation
the model will be used to simulate the meridional variations.

2. The model

The model to be used in the following will be of the quasi-geostrophic kind as formulated
originally by Charney (1948). We recall that a major result of his scale analysis was that for the
large-scale motion one may assume that the advective winds are non-divergent, but in all other
terms the divergence inherent in the model has to be considered.

The vorticity and continuity equations for the flow of an incompressible and homogeneous
fluid are given in (2.1) and (2.2).
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In these equations we have used standard notations. The wind vector which according to the
foundation of quasi-geostrophic model may be considered as non-divergent has a subscript * in
eq. (2.1). The advection term does not appear in the continuity equation since the advection of
the geopotential by a geostrophic wind is zero.

S is a forcing function measuring the amount of fluid added per unit time with the restriction
that the space average of S vanishes. It is the analogue of the heating in the thermodynamic

equation, and it is noted that ¢S has the same dimension as the heating per unit mass and unit

time, i.e. J kg_1 sl =m?s7% We may eliminate the divergence between these two equations

with the result given in (2.3).
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The next step is to take the zonal average of (2.3) using the spherical coordinates. The radius
of the Earth are denoted by a. We obtain the equation given in (2.4).
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The first term on the right hand side of (2.4) contains the meridional transport of eddy
vorticity. In accordance with the discussion in Part I we make the assumption that this transport
may be approximated by an interaction coefficient as given in (2.5).

o
(Seve)z = — —aag; (2.5)

We introduce the meridional variable ¢ = sin(¢) and since we shall use examples in which S is
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symmetric around the equator we approximate the vorticity by setting it equal to the Laplacian
of the geopotential divided by a constant value of the Coriolis parameter. The equation to be
integrated is thus given in (2.6).
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In (2.6) L means the Laplacian of a zonally averaged field. Note also that the subscript z has
been dropped. In addition we have introduce the notation q2 with a dimension of m~? as given

in (2.7).
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The interaction coefficient K was assumed to be a constant in Part I, and it was found
that this assumption resulted in too strong easterlies in the low latitudes. It appears therefore
that this assumption leads to a too large export of momentum from the low latitudes to the
middle latitudes. Some test integrations were made with an assumption that K = O from the
equator to a latitude ¢« while being a constant from this latitude to the North Pole. While
some improvement was noticed in the low latitudes, it was found that too large values were now
observed at the very large latitudes. As a result of these test integrations it appears that an
improved specification could be to assume that K should have its largest values in the middle
latitudes where the wave generation is at a maximum, while small values of K should be at
low and high latitudes. A relatively simple specification of such a variation in K is obtained by
assuming that K has the following form:

K = Knp*(1 - p?) (2.8)

When (2.7) is non-dimensionalized by using a, the radius of the Earth, as the length scale and
fo1 =071 as the time scale we find the equation given in (2.9).
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In Part I it was found convenient to transform the final linear equation into spectral form,
and it was therefore easy to determine the steady state. (2.9) can of course also be brought
into a spectral form, but due to the meridional variation of the interaction coefficient it becomes
quite cumbersome to deduce the spectral equation. The reason is that terms such as p2Pn and
}1.4Pn have to be expressed in terms of the Legendre polynomials. It is therefore more convenient
to integrate (2.9) by using finite differences in space and time. In the integrations reported in
the next section centered differences in time and space (with an uncentered time step at t=0)
have been used. These integrations are carried out for a time necessary to reach a steady state.
Experience shows that integrations have to be carried out for approximately 50 days to approach
the steady state with excellent accuracy, if one starts from a state of rest.

After each time step we get a new value of the potential vorticity, say, V' (1), in each gridpoint.
It is thus necessary to solve the Helmholtz equation

L(g) -’ ¢*¢ =V (u) (2.10)
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The solution could be obtained by the usual iterative scheme, but in the present case it was
found more convenient to write V' (1) as a sum of Legendre polynomials, calculate the coefficients
V(n), obtain the Legendre coefficients for the Laplacian of the geopotential from (2.10) and
obtain the distribution of the Laplacian or the geopotential with latitude by summing the series.

3. Results

For each integration it is necessary to specify the forcing S. Many possibilities are available,
but we shall restrict S to have the general form given in (3.1) assuring symmetry around the
equator.

S(u) = Z s(n) cos(nmpu) (3.1)
n=1

In the first example we use N =1 and s(1) = 0.03 m per s. The interval from equator to the
North Pole is represented by 100 intervals making du = 0.01 corresponding to a grid size of 100
km. The counter of the grid points is denoted by ¢ running from 0 at the equator to 100 at the
North Pole. The forcing is displayed in Figure 1 showing positive forcing in the southern half
and negative forcing in the northern half of the hemisphere. The steady state geopotential is
shown in Figure 2.
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Fig. 1. The forcing in m per s as a function of the meridional counter, where g = 0 corresponds to the equator and
g = 100 to the North Pole.

The zonal wind.s shquld be obtained from the streamfunction. For this purpose we use the
full l-)alance equation given in (3.2). Note that the most cumbersome terms vanish because we
consider the zonally averaged flow.
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Fig. 2. The steady state geopotential as a function of g.

V- (20uVYE) = Vi (3.2)

Eq. (3.2) is non-dimensionalized and solved by developing the variables in series of Legendre
polynomials. Equating the coefficients for the same order of the Legendre polynomials we obtain
a recursion relationship which may be written as given in (3.3).

n
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+1

—5(n=1) =V (g(n)) (3:3)

¢(n+1) +

n
2n

The only disadvantage of (3.3) is that it does not permit the calculation of the first com-
ponent of the vorticity because we would have to use n = 0 in that case. It is, however, seen
that the coefficient of the first component in this special case is equal to zero. This problem
was discussed at length in Part I. In the present case we have set the first component equal
to zero, whereafter the odd components have been computed. The components of the vorticity
may easily be converted to the components of the streamfunction (¢(n) = —(n + 1)¢(n)), and
it is then possible to calculate the zonal winds. For the present case the zonal winds are shown
in Figure 3. It is seen that we obtain reasonable magnitudes of the equatorial easterlies, the
mid-latitude westerlies and the polar easterlies.

The energy conversions may also be obtained. They are calculated using the steady state
solution. In the present case we obtain G(A;) = C(Az, K;) = 6.6 Wm™ %, C(Kg, K;) = —1.8
Wm™? and D(K;) =428 Wm™2. As expected we find that the energy conversion is from KZ to
KE due to the quasi-barotropic nature of the model. The conversions are of the same order of
magnitude as found from observational studies (Wiin-Nielsen and Chen, 1993).

As a second example we use a case in which the forcing is given by s(1) = 1.55,, s(2) = —0.1S,
and s(3) = —0.45, with S, = 0.03 m per s. This forcing is shown in Figure 4. The maximum
forcing is now in the low latitudes and not at the equator as in the first case. Similarly, the
largest negative forcing is at high latitudes, but not at the North Pole. The forcing arrangement
gives a larger gradient in the forcing in middle latitudes. The geopotential for this case is given
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in Figure 5 and shows also a larger gradient in the middle latitudes. The zonal winds, displayed
in Figure 6, have a larger magnitude as should be expected, but the distribution is similar to
the one shown in Figure 3.
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Fig. 3. The zonal velocity as a function of g.
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Fig. 4. The zonal forcing in m per s as a function of q in the second example.
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Fig. 5. The geopotential as a function of ¢ in the second example.
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Fig. 6. The zonal velocity as a function of ¢ in the second example.
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In addition to the basic quantities described above it is possible to determine the momentum
transport implied by the parameterization used in the model. In quasi-geostrophic model it is
of course assumed that the advective velocity is nondivergent. It can then be shown that the
transport of vorticity is related to the momentum transport. To determine the relationship in
spherical coordinates it is an advantage to start from the vorticity transport, use the spherical
formula for this quantity and the fact that the wind components are nondivergent. We get then:

1 ABucos(yp) v
acosp Op

)z

(sv)z = [~

1 Au cos(p)

Tt s weos el (3.4

=

The expression in (3.4) is integrated by parts. The last expression can then be written as
follows:

1 A(uv); cos?(p) B 1 u cos v cos(p)
(ﬂo) [ (80) 6@ ]z (3'5)

" acos?(p) dp acos?

The last term in (3.5) will, however, give no contribution, because the flow is assumed to be
nondivergent. This condition leads to the equation:

ou | d(vcos(p))
e, =0 (3.6)

and it is then obvious that the last term averages to zero.
The momentum transport has been calculated for the second example and is shown in
Figure 7.
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Fig. 7. The momentum transport in m? s™2 as a function of q in the second example.
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4. Conclusions

The shallow water equation applied in a zonally averaged form and with the introduction of an
interaction coefficient varying with latitude provides a simple explanation of the distribution of
the zonal wind with latitude. The resulting winds are in good agreements with observations and
have a correct order of magnitude. The simplicity of the model prevents a description of the
variation of the zonal winds with height, and the model has no transport of sensible heat. These
aspects of the general circulation will require a baroclinic model with at least two levels.
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